Categories
News

DIREC Seminar 2022

DIREC Seminar 2022

26 – 27 SEPTEMBER 2022
HELNAN HOTEL MARSELIS – AARHUS

Thank you so much to all who participated in this year’s DIREC seminar – we hope to see you again next year, where will take it one step further

Two fantastic days with a focus on digital technologies and computer science are over. Thanks to everyone who helped make the days a success.

We will currently upload the presentations from the day below.

Monday 26 September

Software Research: Impact and Challenges

Abstract: Software is an essential, yet invisible, driving force of the present world. There is, however, a striking contrast between, on the one hand, the omnipresence of software in our society and, on the other hand, the extraordinary difficulty to guarantee the correctness, reliability, performance, scalability, safety, and sustainability of modern software systems. There is an urgent need for software engineering innovations: the world of software is a moving target, due to the ever‐increasing size and complexity of software, the technological churn of both hardware and software, the increased heterogeneity of software, and the emergence of new societal and technological challenges. Fostering such innovations requires fundamental software research, independently of specific application. In this talk I will outline the major challenges in software research, what is needed to address these challenges, and the expected impact on software in our society.

Bio: Marieke Huisman is a professor in Software Reliability at the University of Twente. She is well-known for her work on program verification of concurrent software. In 2011, she obtained an ERC Starting Grant, which she used to start development of the VerCors verifier, a tool for the verification of concurrent software. Currently, as part of her NWO personal VICI grant Mercedes, she is working on further improving verification techniques, both by enabling the verification of a larger class of properties, and by making verification more automatic. Since 2019 she is SC chair of ETAPS. Besides her scientific work, she also actively works on topics related to diversity, equity and inclusion, as well as science policy. She is a member of the executive board of VERSEN, the Dutch assocation of software researchers, and chaired this association from 2018 until 2021. She is also a member of the  round table computer science of the Dutch Research Council.

Mosaics of Big Data

Database Systems and Information Management – Trends and a Vision

Abstract: The global database research community has greatly impacted the functionality and performance of data storage and processing systems along the dimensions that define “big data”, i.e., volume, velocity, variety, and veracity. Locally, over the past five years, we have also been working on varying fronts. Among our contributions are: (1) establishing a vision for a database-inspired big data analytics system, which unifies the best of database and distributed systems technologies, and augments it with concepts drawn from compilers (e.g., iterations) and data stream processing, as well as (2) forming a community of researchers and institutions to create the Stratosphere platform to realize our vision. One major result from these activities was Apache Flink, an open-source big data analytics platform and its thriving global community of developers and production users.

Although much progress has been made, when looking at the overall big data stack, a major challenge for database research community still remains. That is, how to maintain the ease-of-use despite the increasing heterogeneity and complexity of data analytics, involving specialized engines for various aspects of an end-to-end data analytics pipeline, including, among others, graph-based, linear algebra-based, and relational-based algorithms, and the underlying, increasingly heterogeneous hardware and computing infrastructure.

At TU Berlin, DFKI, and the Berlin Institute for Foundations of Learning and Data (BIFOLD) we currently aim to advance research in this field via the NebulaStream and Agora projects. Our goal is to remedy some of the heterogeneity challenges that hamper developer productivity and limit the use of data science technologies to just the privileged few, who are coveted experts. In this talk, we will outline how state-of-the-art SPEs have to change to exploit the new capabilities of the IoT and showcase how we tackle IoT challenges in our own system, NebulaStream. We will also present our vision for Agora, an asset ecosystem that provides the technical infrastructure for offering and using data and algorithms, as well as physical infrastructure components.

Bio: Volker Markl is a German Professor of Computer Science. He leads the Chair of Database Systems and Information Management at TU Berlin and the Intelligent Analytics for Massive Data Research Department at DFKI. In addition, he is Director of the Berlin Institute for the Foundations of Learning and Data (BIFOLD). He is a database systems researcher, conducting research at the intersection of distributed systems, scalable data processing, and machine learning. Volker led the Stratosphere project, which resulted in the creation of Apache Flink.

Volker has received numerous honors and prestigious awards, including two ACM SIGMOD Research Highlight Awards and best paper awards at ACM SIGMOD, VLDB, ICDE, and EDBT. He was recognized as ACM Fellow for his contributions to query optimization, scalable data processing, and data programmability. He is a member of the Berlin-Brandenburg Academy of Sciences. In 2014, he was elected one of Germany's leading “Digital Minds“ (Digitale Köpfe) by the German Informatics Society. He also is a member of the Berlin-Brandenburg Academy of Sciences and serves as advisor to academic institutions, governmental organizations, and technology companies. Volker holds eighteen patents and has been co-founder and mentor to several startups.

Workshops

Organiser: Christian S. Jensen, Aalborg University

Invited technical talk by Volker Markl:
NebulaStream: Data Management for the Internet of Things

Organisers: Rasmus Pagh, University of Copenhagen & Rico Jacob, IT University of Copenhagen

11.30: Invitation to differential privacy
Boel Nelson and Rasmus Pagh, University of Copenhagen

12.00: Algorithmic Cheminformatics
Jakob Andersen, University of Southern Denmark

12.30:  A study on succinct data structures
Mingmou Liu, University of Copenhagen

Organiser: Susanne Bødker, Aarhus University

11.30 Presentation and status of people

12.00 Gaze and Eye Movement in Interaction
by Hans Gellersen, Aarhus University/Lancaster University

Eye movement and gaze are central to human interaction with the world. Our visual system not only enables us to perceive the world, but also provides exquisite control of the movements we make in the world. The eyes are at the heart of this, never still, and in constant interaction with other parts of our body to direct visual attention, extract information from the world, and guide how we navigate and manipulate our environment. Where we look implicitly reflects our goals and information needs, while we also able to explicitly direct our gaze to focus attention and express interest and intent. This makes gaze a formidable modality for human-computer interaction (HCI).

In this talk, I will highlight how closely the movement of our eyes is coupled with other movement, of objects in the visual field, as well movement of our hands, and our head and body, and discuss examples of novel interfaces that leverage eye movement in concert with other motion.

Hans Gellersen is Professor of Interactive Systems at Lancaster University and Aarhus University. His research background is in sensors and devices for ubiquitous computing and human-computer interaction and he has worked on systems that blend physical and digital interaction, methods that infer context and human activity, and techniques that facilitate spontaneous interaction across devices. Over the last ten years a main focus of his work has been on eye movement. In 2020, he was awarded an ERC Advanced Grant by the European Research Council for research on Gaze and Eye Movement in Interaction.

Organiser: Jan Madsen, Technical University of Denmark

11:30  The CPS ecosystem — status

11:45  Partner presentations covering; scientific focus, application domains, people, key projects (15 min each):

  • How to build a Digital Twin
    Mirgita Frasheri (AU)
  • Hardware/Software Trade-off for the Reduction of Energy Consumption, (Explore) Maja and Martin (RUC, DTU)
  • AAU?
  • ITU?
12:30 Identifying the Grand Challenges of CPS 

Organiser: Kim Guldstrand Larsen, Aalborg University

SESSION 1 Verification

BRIDGE: Verifiable and Safe AI for Autonomous Systems

Overview and Status
by Kim Guldstrand Larsen, Aalborg University

HOFOR Case and Strategy Representation
by Andreas Holck Høegh-Petersen, IT University of Copenhagen

Aarhus Vand Case and Reinforcement Learning
by Martijn Goorden (AAU)

TECHNICAL LIGHTENING TALKS

Verification of Dynamical Systems
by Max Tschaikowski, Aalborg University

Verification of Neural Network Control Systems
by Christian Schilling, Aalborg University

Formal Verification and Robust Machine Learning
by Alessandro Bruni, IT University of Copenhagen

EXPLORE: Verifiable and Robust AI FUTURE projects
ALL

EXPLORE: Certifiable Controller Synthesis for Cyber-Physical Systems FUTURE projects
Martijn Goorden (short status)

Organiser: Mads Nielsen, University of Copenhagen

11:30: Overview of DIREC and Pioneer Centre activities
Mads Nielsen, KU

11:40: EXPLAIN ME, Explainable AI for Medical Education
Aasa Feragen, DTU

12:00: HERD - Human-AI Collaboration: Engaging and Controlling Swarms of Robots and Drones
Anders Lyhne Christensen, SDU Maria-Theresa Oanh Hoang, AAU Kasper Andreas Rømer Grøntved, SDU

12.20: Trimming Data Sets: a Verified Algorithm for Robust Mean Estimation
Alessandro Bruni, IT University of Copenhagen

12.40: Privacy and Machine Learning
Peter Scholl, Aarhus University

Organiser: Claudio Orlandi, Aarhus University

Part I: Differential Privacy

(joint session with New Perspectives on Algorithms and Datastructures)

11.30 Invitation to differential privacy
Boel Nelson and Rasmus Pagh, University of Copenhagen

12.10 - Small break to change room

Part II: Security in AI
(joint session with AI – Machine Learning, Computer Vision, NLP)

12.20 Trimming Data Sets: a Verified Algorithm for Robust Mean Estimation
Alessandro Bruni, IT University of Copenhagen

12.40 Privacy and Machine Learning
Peter Scholl, Aarhus University

See abstracts

Workshops continued

Organiser: Christian S. Jensen, Aalborg University

Spatial Data Management
 
14.05 – 14.30: Efficient Data Management for Modern Spatial Applications and the Internet of Moving Things
by Eleni Tzirita Zacharatou (ITU)
 
14.30 – 14.55: Building a maritime traffic network for route optimization using AIS data
by Búgvi Benjamin Jónleifsson Magnussen & Nikolaj Blæser (RUC)
 
14.55 – 15.20: Big Mobility Data Analytics: Algorithms and Techniques for Efficient Trajectory Clustering
by Panagiotis Tampakis (SDU)

Organisers: Rasmus Pagh, University of Copenhagen & Rico Jacob, IT University of Copenhagen

14.00: Stochastic Games with Limited Memory Space
Kristoffer Hansen, Aarhus University

14.30: Recent Advances in I.I.D. Prophet Inequalities
Kevin Schewior, University of Southern Denmark

15.00: New algebraic formula lower bounds for Iterated Matrix Multiplication
Nutan Limaye, IT University of Copenhagen

Organiser: Susanne Bødker, Aarhus University

14.00 Rework – status, presentation and workshop

15.00 Wrap-up and a quick discussion of the Danish HCI research day

Organiser: Jan Madsen, Technical University of Denmark

14:00  Presentation of current WS6 DIREC projects (15 min each):

Biochip routing, (Explore)
Luca and Kasper (DTU)

Technologies for executing AI in the edge, (Bridge)
Emil and Ahmad (DTU, SDU)

Adaptive Neural Networks on Embedded Platforms,
Jalil Boudjadar (AU)

CPS with HITL, (Explore)
Mahyar Touchi Moghaddam (SDU)

Business Models for Embedded AI - Current case company business models and beyond
Reza and Ben (CBS)

15:15  Conclusions of the day

Organiser: Kim Guldstrand Larsen, Aalborg University

SESSION 2 Software Engineering

BRIDGE: SIOT – Secure Internet of Things – Risk analysis in design and operation
by Jaco van de Pol & Alberto Lafuente (short status)

EXPLORE: DeCoRe: Tools and Methods for the Design and Coordination of Reactive Hybrid Systems
by Thomas Hildebrandt (short status & technical talk)

TECHNICAL LIGHTENING TALKS

Lightweight verification of concurrent and distributed systems
by Alceste Scala (DTU)

Certified model checking – verifying the verifier
by Jaco van de Pol, Aarhus University

Refinement and compliance
by Hugo-Andrés López, Technical University of Denmark

Differential Testing of Pushdown Reachability with a Formally Verified Oracle
by Anders Schlichtkrull, Aalborg University

Monitoring of Timed Properties
by Kim G. Larsen, Aalborg University

Organiser: Mads Nielsen, University of Copenhagen

14:00 Large-scale Neuroimaging Study on a Danish Cohort: COVID-19, Brain Volume, and microbleeds
Kiril Klein, University of Copenhagen

14:15 Fetal Ultrasound scanning assistance
Manxi Lin, Technical University of Denmark

14:30 Inducing Gaussian Process Networks
Thomas Dyhre, Aalborg University

14:45 Bridge project: Deep Learning and Automation of Imaging-Based Quality of Seeds and Grains
Lars Kai Hansen, Technical University of Denmark

15:00 Fine-Grained Image Generation with Super-Resolution
Andreas Aakerberg & Thomas Moeslund, Aalborg University

15:15 Summary of workshop
Mads Nielsen, University of Copenhagen

Organiser: Claudio Orlandi, Aarhus University

14.00: Security Protocols as Choreographies
by Marco Carbone

14.20:  A formal security analysis of Blockchain voting
by Bas Spitters, Aarhus University

14.40: Challenges in anti-money laundering and how cryptography can help
by Tore Frederiksen, The Alexandra Institute

15.00: Networking

See abstracts

One Minute Madness
Presentation of DIREC projects following Q&A

Tuesday 27 September

Moderator: Jan Madsen, University of Southern Denmark

Abstract
Quantum computers have the potential to solve certain tasks that would take millennia to complete even with the fastest (conventional) supercomputer. Numerous quantum computing applications with a near-term perspective (e.g., for finance, chemistry, machine learning, optimization) and with a long-term perspective (i.e., cryptography, database search) are currently investigated. However, while impressive accomplishments can be observed in the physical realization of quantum computers, the development of automated methods and software tools that provide assistance in the design and realization of applications for those devices is at risk of not being able to keep up with this development anymore.

This may lead to a situation where we might have powerful quantum computers but hardly any proper means to actually use them. In this talk, we discuss how design automation can help to address this problem. This also includes an overview of corresponding software tools for quantum computers covering the simulation, compilation, and verification. More details here.

Bio
Robert Wille is a Full and Distinguished Professor at the Technical University of Munich, Germany, and Chief Scientific Officer at the Software Competence Center Hagenberg, Austria (a technology transfer company with 100 employees).

He received the Diploma and Dr.-Ing. degrees in Computer Science from the University of Bremen, Germany, in 2006 and 2009, respectively. Since then, he worked at the University of Bremen, the German Research Center for Artificial Intelligence (DFKI), the University of Applied Science of Bremen, the University of Potsdam, and the Technical University Dresden. From 2015 until 2022, he was Full Professor at the Johannes Kepler University Linz, Austria, until he moved to Munich.

His research interests are in the design of circuits and systems for both conventional and emerging technologies. In these areas, he published more than 400 papers and served in editorial boards as well as program committees of numerous journals/conferences such as TCAD, ASP-DAC, DAC, DATE, and ICCAD. For his research, he was awarded, e.g., with Best Paper Awards, e.g., at TCAD and ICCAD, an ERC Consolidator Grant, a Distinguished and a Lighthouse Professor appointment, a Google Research Award, and more.

Workshops

Organiser: Mark Riis, Technical University of Denmark

Collaboration on entrepreneurship across universities

  • Recap on WS 13 activities in 2021-2022 – activities, budget etc.
    Mark Riis, DTU Compute

  • Open Entrepreneurship – learnings from inviting investors into universities
    Rasmus S. B. Jensen, Open Entrepreneurship, DTU Compute

  • Young Researcher Entrepreneurship - results and experiences
    Camilla N. Jensen, AI Pioneer Centre, DTU Skylab

  • Digital Tech Summit - results and experiences Mark Riis, DTU Compute 

  • Discussion, learnings and knowledge sharing

Which joint activities should we initiate in 2022-2023
  • DIREC at Digital Tech Summit 2022
  • Other activities in relation to supporting entrepreneurship and collaboration across universities

Organiser: Mikkel Baun Kjærgaard, University of Southern Denmark

How to make computing education appeal to a broader range of students
by Claus Brabrand, IT University of Copenhagen

We present recent research on gender diversity in Computing. Recent research documents strong and significant gender effects related to the interests in working with PEOPLE vs THINGS along several dimensions. In particular, this relates to the themes of teaching/learning activities (i.e., the themes of exercises, projects, and examples), the framing of advertisement materials, and the composition of courses on educational programmes. We will explain these results and effects as well as give actionable evidence-based recommendations for how to make Computing educational activities & programmes appeal to a broader range of students.

How digital learning technology can provide insights on teaching quality of large classrooms
by Md Saifuddin Khalid, Department of Mathematics and Computer Science, Technical University of Denmark

Semester-end and mid-term online feedback are important information for both students and course instructors etc. Unfortunately, the teaching quality evaluation tools that are used at Danish universities are often time consuming and do not allow for self-reflection on teaching and learning, which can enable mutual understanding and collaboration between the students and course instructors. Join us at this workshop, where we will provide a tutorial and experience from two large courses adopting Wyblo. Wyblo is a people-centered learning experience platform which provides useful insights on teaching quality to both course instructors and students.

How to use technology to scale courses
by Jakob Lykke Andersen, Dept. of Mathematics and Computer Science, University of Southern Denmark and Ulrik Nyman, Dept. of Computer Science, Aalborg University

In this workshop we will discuss how to use software and infrastructure for scaling and improving quality of teaching in Computer Science. As inspiration for the discussion, we have two presentations:

Teaching 400 students to program in 16 weeks with 3 teachers and 17 teaching assistants
by Jon Sporring & Ken Friis Larsen, KU

At the Department of Computer Science, University of Copenhagen, we have recently upscaled our introduction to programming for our bachelor courses. In the last 5 years, we have grown from 200 to 400 students, and in the process, we have developed IT tools to both manage the growth and at the same time increase the learning quality. In this talk, we will discuss the pedagogical challenges, the resource challenges, the developed tools for helping the students self-learn and give the students structured feedback, and the lessons learned in the process.

Automatic feedback and correction of programming software assignments for scalable teaching
by Miguel Enrique Campusano Araya & Aisha Umair, SDU

In this talk, we present Scalable Teaching. This tool uses automatic testing to grade students’ programming assignments and provides feedback to them automatically. Moreover, Scalable Teaching allows professors to grade assignments and give feedback manually more efficiently. We have successfully tested this tool in several software engineering courses with more than 100 students.

Organiser: Thomas Hildebrandt, University of Copenhagen

Make your research visible and understood outside academia
by Peter Hyldgård, Sciencecom.dk

  • Be heard - and understood
  • Tell a good story about your research
  • Pitch your research
  • Talk about your research to non-peers (your Aunt Erna...)
How do you tell a simple story about your research that everyone can understand - without compromising on the academic content?

And how do you build a bridge to an audience that does not have any immediate interest in/knowledge of your topic?

The speaker will introduce a number of simple tools for finding a story about your research, which can be uses in many contexts: When you have to seek funding, when you are interviewed by a journalist - or when you must tell your Uncle Adam about your work. The workshop will be a mixture of presentations and small exercises, with a slightly larger final exercise where the participants will give a - very short - oral 'pitch' of their research.

Organiser: Helle Zinner Henriksen, Copenhagen Business School

End of the Rainbow

In this session we will discuss how technical solutions and ideas from some of  the DIREC projects can be diffused to a wider context, supporting innovation and impact.

Session speakers:

  • Geet Khosla, Tech entrepreneur with particular focus on leveraging technologies with massive potential to have a positive impact.
  • Martin Møller, Chief Scientific Officer at the Alexandra Institute
  • Peter Gorm Larsen, Professor at Department of Electrical and Computer Engineering - Software Engineering & Computing systems at AU
  • Ben Eaton, Associate professor at Department of Digitalization at CBS.
The session focuses on the business potential and evolves around the question “How to harvest spill-over benefits from foundational tech research?”

Inspired by the session speakers’ input the audience is invited to contribute to the session in the discussion of potential avenues to address the question. The aim is to illustrate the benefit of addressing tech and business.

Organiser: Jan Madsen, Technical University of Denmark

10:00 – 12:00 Tutorial:


• Basic concepts
• Models of computations
• Use cases / Applications
• Tools + Integration to host
 
Speakers:


12:00  - 12:30  Open discussion on opportunities for and in DIREC
Discussion leader: Sven Karlsson, DTU Compute

How can data accelerate the green transformation?

Hierarchical forecast reconciliation
by Jan Kloppenborg Møller, DTU Compute

A unique collaboration between a university and a private company

In 2019, the Swiss non-profit Concordium Foundation founded the Concordium Blockchain Research Centre Aarhus at Aarhus University (AU). This is a unique example of collaboration between a university and a company where the company sponsors the research carried out at the university with a substantial amount of money.

In this session Associate Professor Bas Spitters from Aarhus University and Senior Researcher Daniel Tschudi from Concordium will share their experiences from the collaboration and comment on issues like:

  • What is collaboration about?
  • What is the current status?
  • What are the future challenges?
  • How did the collaboration start?
  • What do the researchers get out of it?
  • What does Concordium out of it?
  • How does Concordium embed/anchor research activities within Concordium?
  • How  does the collaboration work out in practice?
  • How do one handle the borderline between research to be carried out in the center and development to be carried out in the company?
  • What is their advice to researchers regarding similar collaborations?

About Concordium Blockchain Research Centre Aarhus

The research center is to provide the basic research needed to build energy-efficient and scalable blockchain technology that is provably secure. Along the way, it is expected that a lot of discoveries in the blockchain space and related sciences that we cannot anticipate at the onset.

About the Swiss non-profit Concordium Foundation

The mission is to fund research in the blockchain space, and build a new foundational blockchain with focus on business and regulatory compliance. The center performs free, basic research in the theory and technology underlying blockchains. All research performed in the center is open source and patent free and will help build a solid foundation for the entire blockchain space.

  • Lars Bak, Former Head of Google's Development Dept. in Denmark,
  • Steffen Grarup, Uber
  • Kresten Krab Thorup, Founder of Humio
Moderator: Professor Ole Lehrmann Madsen

Lars, Steffen and Kresten are all graduates from department of computer science at Aarhus University. They have all made an impressive careers with high tech comp companies in Silicon Valley and Denmark. These companies include Next Computer, Sun Micro Systems, VMware, Google, and Uber. They have also been involved in a number of start-ups including Animorphic Systems, OOVM, Toitware, Trifork and Humio. These endeavors have resulted in development of a large palette of new innovative digital technologies.

In the panel they will tell us about their experience and highlight the most important lessons from their careers including their life as computer science students. We will ask them about their advice to students and young candidates of today regarding how to get an interesting carrier working with ground-breaking digital technologies and getting them out in successful products.

Speakers

Marieke Huisman

Professor in Software Reliability
University of Twente

Volker Markl

Professor of Computer Science
Technische Universität Berlin

Robert Wille

Professor
Technical University of Munich

Lars Bak

Former Head of Google's division in Denmark

Steffen Grarup

Senior Director Engineering
Uber Technologies

Kresten Krab Thorup

Founder and former CTO
Humio

Daniel Tschudi

Senior Researcher
Concordium

Bas Spitters

Associate Professor, Aarhus University

Categories
News

Digitalisation can definitely boost the green transition

13 July 2022

Digitalisation can definitely boost the green transition

Artificial intelligence and algorithms can help calculate how we can best heat our homes, produce efficiently, transport with the least possible energy consumption, and make optimal use of the IT infrastructure as part of the green transition. But it requires that we dare to delegate more tasks to algorithms and invest more in research and development.

Categories
News

Internet of Behaviour will be the backbone of the production of the future

22 JUNE 2022

Internet of Behaviour will be the backbone of the production of the future

Companies are increasingly investing in systems with sensors that can capture employees’ interaction with physical objects such as motors and robots. Small computers inside the physical objects must adapt optimally to the context in which the objects are to be used to be a commercial or practical success.

Mahyar Tourchi Moghaddam, who is Assistant Professor at the Maersk Mc-Kinney Moller Institute at the University of Southern Denmark, is very interested in this area. Moghaddam is associated with DIREC and the project ‘Cyber-Physical Systems with Humans in the Loop’, which will explore and map out how software engineers can best design cyber-physical systems adapted to users and the context in which they are to function.

Read more in Danish.

Categories
Entrepreneurship project News

Tailored course is to start the entrepreneurial fire in young researchers

21 JUNE 2022

Tailored course is to start the entrepreneurial fire in young researchers

At the end of May, 55-60 younger researchers from the computer science departments across Denmark attended a course on entrepreneurship. The course is a collaboration between DIREC, the Pioneer Centre for AI, the Foundation for Entrepreneurship and the Danish Data Science Academy. It has been both a breeding ground for concrete start-ups and an introduction to the ecosystem for innovation at the Danish universities.

Most importantly, a mindset in entrepreneurship thinking has been planted in the researchers, explains Mark Riis, Head of Innovation at DTU Compute, and originator of the course as well as leader of DIREC’s work with entrepreneurship.

“It is of great value to plant this mindset because researchers work in a different way and only publish when the last sentence is finished. Entrepreneurship is about experimenting and testing your idea with the outside world and the market, so that you always get feedback. In addition to planting this mindset, the course has inspired some of the participants to start a business based on their research. It is going to be exciting to see how the concrete startup ideas develop.”

Read more in Danish.

Categories
News Phd school

MOVEP 2022: Five Intensive Days on Modelling and Verification

17 JUNE 2022

MOVEP 2022: Five Intensive Days on Modelling and Verification

Automated systems like self-driving cars and AI-based decision support are becoming an increasingly large part of our everyday lives, and so is the need for modelling and verification of the software running these systems. At the MOVEP 2022 Summer School, hosted by the Department of Computer Science, Aalborg University, leading researchers, students and people from the industry convened to discuss challenges and opportunities within this field.

By Stig Andersen, Aalborg University

The five-day MOVEP Summer School 2022 (June 13-17) on modelling and verification of parallel processes had attracted 70+ participants, primarily PhD students, but also people from the industry.

With the lecture hall of the Department of Architecture, Design and Media Technology right at Aalborg’s harbour front as a great venue, they enjoyed a packed programme of talks and tutorials from 11 leading researchers on model checking, controller synthesis, software verification, temporal logics, real-time and hybrid systems, stochastic systems, security, run-time verification, etc.

An exciting field

One of the speakers was Christel Baier, Professor and Head of the chair for Algebraic and Logic Foundations of Computer Science at the Faculty of Computer Science of the Technische Universität Dresden, and together with Joost-Pieter Katoen, the author of a key publication in the field, Principles of Model Checking (MIT Press, 2008). She has been working within the broad field of verification and analysis techniques for stochastic operational models for more than twenty years.

– I really had not expected to work so long within this area, but as it often turns out in science, apparently simple problems are not at all simple and will require more research. So, if the students at this summer school would take the message that this is an exciting and very important field and choose to explore it further, I would be very happy. MOVEP is a very nice event, and being able to come to Denmark and not least being able to meet again after the Corona shutdown is really great, she says.

Application in different fields

Another speaker was Nir Piterman, Professor in the Department of Computer Science and Engineering, University of Gothenburg and Chalmers, and a prominent figure within formal verification and automata theory. He kicked off the summer school programme Monday morning with a tutorial on reactive synthesis, which is a technique for automatically generating correct-by-construction reactive systems from high-level descriptions.

 – In my tutorial, I tried to give the participants a taste of the so-called discrete two-player turn-based games technique, where you think about the environment as one player and the system as another player. The interaction is like a game between the two, and the system has to come up with a strategy to satisfy some goal, he explains.

Nir Piterman also sees an event like MOVEP as a very good opportunity for young researchers to be exposed to concepts and techniques that they would not necessarily be exposed to otherwise.

– It is my hope that the talks and tutorials at this event will fertilize their work and provide them with new ideas about how to apply these techniques in different fields. One possible usage of two-player games is synthesis, but the usage could be wider and potentially applied to other problems, he says.

Nir Piterman is currently the holder of an ERC consolidator grant to study the usage of reactive synthesis for multiple collaborating programs.

Explainability

In her tutorial, Christel Baier focused on explication, which refers to a mathematical concept that in some way sheds light on why a verification process has returned a given result.

– Explainability is important. We have to make systems more understandable to everyone – scientists, designers, users, etc. Today, everybody is an IT user, so this is not only relevant for computer scientists, she says.
According to Christel Baier, there is a higher purpose:

– Since systems make decisions, users should have the opportunity to understand why decisions were made. Moreover, users should be supported in making decisions by themselves and be given an understanding of the configuration of these systems and their possible effects. Again, it comes down to the question of cause and effect, which was a recurring theme of my tutorial.

The research on the results presented by Christel Baier at her tutorial has been carried out within and is motivated by the missions of the collaborative projects “Center for Perspicuous Computing (CPEC)” and “Centre for Tactile Internet with Human-in-the-Loop (CeTI)”.

Correct-by-construction

Research within modelling and verification of parallel processes may also explore the question: Could we automatically generate systems that perform exactly according to the specifications instead of checking afterwards that they do? Nir Piterman dealt with this topic in his tutorial.

– Techniques to automatically generate correct-by-construction reactive systems from high-level descriptions have been explored in academia for quite a number of years. It has proven to work in some domains, but it would not be realistic to set as an ambition to build one synthesizer that you feed a specification to and expect it to auto-generate safe and error-free systems for all possible programming domains, he says.

According to Nir Piterman, the most successful applications so far have been within robotics. However, this success makes us think about what is the meaning of correct-by-construction.

– What does “correct” really mean? If it means that the system does exactly what was described in the specification, what happens if the specification is flawed? So, the focus of the correctness problem might change: Rather than making sure that the system matches the specification, the task is to ensure that the specification is thorough enough and reflects what the designer had in mind.

FURTHER INFORMATION

  • MOVEP 2022 is hosted by the Department of Computer Science, Aalborg University (primary organizer Martin Zimmermann, Associate Professor) and co-sponsored by DIREC an S4OS.
  • The first five editions of MOVEP took place in Nantes (France) every other year from 1994 to 2002. It then moved to Brussels (Belgium) in 2004, Bordeaux (France) in 2006, Orléans (France) in 2008, Aachen (Germany) in 2010, Marseille (France) in 2012, Nantes (France) in 2014, Genova (Italy) in 2016, Cachan (France) in 2018 and online in 2020.
  • More info on the MOVEP 2022 website.

CONTACT
Martin Zimmermann
Associate Professor
Department of Computer Science
Aalborg University
Mail: mzi@cs.aau.dk
Phone: +45 9940 8770

Stig Andersen
Communications Officer
Department of Computer Science
Aalborg University
Mail: stan@cs.aau.dk
Phone: +45 4019 7682

Professor Nir Piterman, University of Gothenburg and Chalmers

Professor Christel Baier, Technische Universität Dresden

Categories
News

SDU behind database for robot assembly: Industrial companies must learn from their own and other companies’ data

31 MAY 2022

SDU behind database for robot assembly: Industrial companies must learn from their own and other companies' data

A new approach for gathering robotic experience from industry, so companies don’t have to start from scratch every time they need to put robots into production, has been launched – SDU is leading the project, which shall make better use of robotic data.

As robots and automation solutions increase in industrial companies, plans and project descriptions grow in numbers, often ending up in a digital folder on a company PC – if such data is stored at all. In most cases the data is never to be used again.

So is the reality today, but in the future, established solutions for automation, robots and data produced during the production process shall be reused, possibly even from other companies. In that way, companies do not have to design the complete solution from scratch themselves.

This is the ambition of the ReRoPro project (Re-Use of Robotic-data in Production through search, simulation and learning) which is funded by the national research centre DIREC and led by the Mærsk Mc-Kinney Møller Institute at SDU.

– Big data is already being used in the IT-field, where it has been crucial for developments in areas such as facial or object recognition. In the robotics field, there is great potential for gathering data and experience from companies that have already adopted new technology and automation in their production, says professor Norbert Krüger from the SDU Robotics at the Faculty of Engineering.

– Today, each company stores robot data – if at all – in their own format, but such data could just as well benefit others so that we can spread the use of robots and ultimately maintain or even attract production back to Denmark, he says.

Giants onboard

SDU is behind ReRoPro, together with Aalborg University and University of Copenhagen who also are partners in the DIREC project. The project also includes two Danish industrial giants, Novo Nordisk and Rockwool, the robotics company Nordbo from the Funen robotics cluster and the Allerød based company Welltec. Odense Robotics and MADE are also partners.

The ambition is to create a structure for a database with the help of the companies. We aim to gather information from existing solutions in such a structure that makes it possible to reuse or be inspired by that data when creating their own solution, says the SDU professor.

Novo Nordisk and Rockwool are already on board, but the intention is to get even more companies involved, Norbert Krüger stresses. That’s why a conference is planned for 8 September, where he hopes many industrial companies will come forward.

– For a lot of companies, this kind of data is considered a company secret, so we need to find a way how they can learn from each other in a safe environment. At the same time, we want to know more about what companies need out in the field so that we can take that into our work, says Norbert Krüger.

Initially, the project will run until autumn. Still, the plan is to outline a plan and invite industry along – via the conference – so that funding can then be secured for a significant research project based on the initial work, which is starting now.

Read more about the conference
Read more about the project

FACTS

  • ReRoPro (Re-Use of Robotic-data in Production through search, simulation, and learning).

  • A new DIREC project headed by SDU in Odense with Aalborg and Copenhagen Universities involved. The ambition is to include many companies and already now the two Danish industrial giants, Novo Nordisk and Rockwool, and the robotics company Nordbo from the Funen robotics cluster as well as Welltech from Allerød are on board. Odense Robotics and MADE are also partners.

  • The initial project, funded by Innovation Fund Denmark, is to establish a structure for the database within six months, after which the ambition is to follow up with a larger project building the actual database and storing big data.

  • On 8 September, a conference is planned to gather companies and potential partners to discuss the ambitions and needs of industry.

Categories
News

New technologies can help banks, insurance companies and authorities fight fraud

26 APRIL 2022

New technologies can help banks, insurance companies and authorities fight fraud

Blockchain-based technologies can not only be used for cryptocurrencies. The technology eliminates the need for an intermediary when making transactions between two parties and can ensure that data cannot be modified.

By combining this feature with cryptographic techniques will enable banks and authorities to share sensitive personal data securely and enable them to fight fraud. This is exactly the purpose of a new project between researchers from Aarhus University, the IT University of Copenhagen and the Alexandra Institute, which is supported by DIREC – Digital Research Centre Denmark.

Read more (in Danish)

Categories
News

Meet Miao Zhang, who works on the black-box problem with automated deep learning

8 APRIL 2022

Meet Miao Zhang, who works on the black-box problem with automated deep learning

The 31-year-old Miao Zhang from China focuses on areas such as automated machine learning and deep learning. The areas are still in their early stage, but automated deep learning has a big potential as a system builds itself without human interaction. 

Miao works as Assistant Professor at the Department of Computer Science at Aalborg University. He is also part of the DIREC workstream Advanced and Efficient Big Data Management and Analysis. The project focuses on how we can develop new efficient prototypes that can enable the use of big data in industry. Miao focuses especially on building efficient and explainable prototypes for different tasks and data in an automated manner.

Can you tell us about your background and why you settled down in Denmark as a computer scientist?
I am interested in machine learning, automated deep learning and explainable AI. I hope that I can introduce automated deep learning and explainable AI to the Danish data science community, since research about this topic is rare.

Besides that I chose to come to Aalborg because it is a young and very active university, which provides a lot of opportunities for young researchers. I have several friends, who are working here, and they also recommend me to join their group, Center for Data-Intensive Systems (DAISY), which has an international reputation. I believe I can learn a lot here. 

I think the working environment in Denmark and Aalborg is pretty good. We have a lot of flexible time, so I can focus on my research. In addition, I think Aalborg is an environmentally-friendly city, and I really enjoy life here.

Can you tell us about your research area?
I have broad research interests in machine learning and artificial intelligence – especially automated deep learning and explainable AI. I am interested in automatic development of efficient, scalable and robust algorithms for machine learning, data mining, data management and deep learning applications with formal theoretical guarantees and explanations. I see myself working on these problems in my foreseeable research life. 

What are the scientific challenges and perspectives of your project?
Although the techniques of deep learning have been applied in different areas, such as computer vision, face recognition, medical imaging, natural language processing, data mining and data management, the design of deep learning systems is time-consuming – and it is still a black box problem to explain why the developed deep learning system is working. 

Automated deep learning is the process of building deep learning systems for different problems without human intervention. Explainable AI is to explain why the developed system is working – and it can also assist the design of the deep learning system. Automated deep learning and explainable AI are in their early-stages, and we still need to define some research problems, improve efficiency, and explain why the automated designed system works.

How can your research make a difference for companies and communities?
Automated deep learning aims to build a better deep learning system in a data-driven automated manner, so that most practitioners in deep learning can build a high-performance machine learning model without being an expert in the field of deep learning.

Automated deep learning can provide end-to-end deep learning solutions and these solutions are usually better than hand-designed deep learning systems. These automated systems can lower the threshold of deep learning and make it easy for everyone to use these techniques to solve their own problems.

About Miao Zhang
  • Masters Degree from University of Science and Technology in Beijing

  • PhD in information technology from University of Technology Sydney, Australia

  • PostDoc at the Machine Learning Group at Monash University, Australia

  • Assistant Professor at Aalborg University.

Read more

Categories
News

Meet Martin Zimmermann whose research focus is on verification tools

31 March 2022

Meet Martin Zimmermann whose research focus is on verification tools

39-year-old Martin Zimmermann from Germany works with correct and secure systems. Since the summer of 2021, he has worked as Associate Professor at the Distributed, Embedded and Intelligent Systems research group (DEIS) at the Department of Computer Science, Aalborg University.

Zimmermann is part of the DIREC project Verifiable and Safe AI for Autonomous Systems. The aim of the project is to develop methods and tools for safety critical systems within a variety of domains. Here, he works on understanding the foundations of correct and secure systems.

Can you tell about your research area?
Software and embedded systems are everywhere in our daily lives, from medical devices to aircrafts and the airbags in our cars. These software systems are often very complex, and it is challenging to develop correct systems. Therefore, we need verification software that can check such systems for errors.

The news is full of stories of potential vulnerabilities in software and embedded systems. Some of these vulnerabilities have been there for several years and are very hard to find. They might not be seen in daily use – only when you try to exploit a system.

It is even more pronounced when you look at distributed systems made up of several components interacting with each other. Like a website for the seat reservation system in a cinema where you click on the seat, which you want to book, while others do it at the same time. The system must be able to deal with many concurrent requests. Verification tries to automate the reasoning and automatically proves that the system is correct and safe.

How can we make these systems more secure?
Personally, I am interested in viewing this as a kind of game. I want to design a system that lives in an environment, so I understand this as a game between the system and the environment. The system wants to satisfy a certain property and the environment wants to break the system. And by that game-view you can get very strong guarantees.

It’s very hard to get complex systems correct. And if you have a safety-critical system you need those guarantees to be obtained by verification software. If you employ software that controls an airbag, then you want to be sure that it works correctly. It’s easy to miss errors – so you cannot rely on humans to check the code.

What is the potential of verification?
Verification is a very challenging task. It is challenging for a human to argue that a system is correct, and it is also hard for a computer, so unfortunately, it is not applicable universally. Verification is used for systems that are safety-critical, but even here there is a tradeoff between verification cost and development cost. 

One of our goals is to develop techniques that are easy to use in practice. We work on the foundations of verification languages and try to understand how far we can push their expressiveness before it becomes infeasible to verify something. It can take hours or days to verify something, so it is a computationally expensive task. We try to understand what is possible and try to find problems and application areas where you can solve this task faster.

Another important thing is that we need precise specification languages for verification. You cannot use natural language. The verification algorithm needs a precise specification with precise semantics, so we are developing different logics to see if they can be used by engineers to actually write specifications. If it is too complicated for the practitioner, e.g., the engineer, it will not be used. You must find the sweet spot between expressiveness and usability.

Did you know Aalborg University before you were employed?
I have had a connection to Aalborg since my PhD where I worked on a European project with partners from all over Europe including the DEIS group in Aalborg. I was in Aalborg a few times during my PhD and knew people here. Aalborg is central in Europe when it comes to verification and design of systems. There are many collaborators and there is a good connection to the industry compared to other places. It is a very good location.

About Martin Zimmermann

  • PhD from RWTH Aachen University.
  • Postdoc at Warsaw University and University of Saarland in Saarbrücken.
  • Lecturer at the University of Liverpool.
  • Associate Professor at Aalborg University.

Read more

Categories
News

DIREC annual report 2021

2 March 2022

DIREC Annual Report 2021

We have gathered the first year’s experience in this annual report. Here you can read that DIREC initiated 11 bridge projects for a total of DKK 166 million in which researchers across universities are working together with a large number of companies and public organizations to develop new digital technologies.