
WS12.P12

Software Infrastructures for Teaching at Scale

Editors: Jakob Lykke Andersen & Ulrik Nyman

Contributors: Lúıs Cruz-Filipe, Michele Albano,
Florian Echtler, Jens Myrup Pedersen,

Miguel Campusano, Aisha Umair, Marco Chiarandini,
Md Saifuddin Khalid & Jiayan Wu

May 1, 2024

Abstract

This report describes the lessons learned through the DIREC project
P12 - Software Infrastructures for Teaching at Scale. This includes both
the lessons learned from actual sub-projects as well as the meta lessons
coming from a distributed DIREC project.

Contents

1 Introduction 3
1.1 Context Within DIREC . 3
1.2 Existing Cloud Infrastructure for Teaching at Scale 3
1.3 Communication and Commitment 4
1.4 Outline . 4

2 Summary of Experiments 4

3 A: Support System for Programming Projects 6
3.1 Teaching Context and Objectives 6
3.2 Software and Infrastructure . 6
3.3 Outcome and Recommendations 7

4 B: Teaching Software Engineering at Scale 9
4.1 Teaching Context and Objectives 9
4.2 Software and Infrastructure . 9
4.3 Outcome and Recommendations 10

5 C: Automatic assessment of software assignments: Scalable
Teaching 11
5.1 Teaching Context and Objectives 11

5.1.1 Case A: Web Technologies 11
5.1.2 Case B: Advanced Object-Oriented Programming 12

5.2 Software and Infrastructure . 12

1

5.3 Outcome and Recommendations 13
5.3.1 Automatic Testing . 13
5.3.2 Code Review Quality Assessment 14
5.3.3 Software Engineering Outside Coding Components 14
5.3.4 Difficulty of Use for Students 14
5.3.5 Difficulty of Use for Professors 15

6 D: Distributed Systems Graphical Interface 16
6.1 Teaching Context and Objectives 16
6.2 Software and Infrastructure . 16
6.3 Outcome and Recommendations 17

7 E: Enhancing Cybersecurity Education Through Developing for
Haaukins 19
7.1 Teaching Context and Objectives 19
7.2 Software and Infrastructure . 20
7.3 Outcome and Recommendations 21

8 F: Software Infrastructures for Teaching at Scale: The Case of
Introduction to Statistics at Technical University of Denmark 23

9 G: Web Apps for Education Management 24
9.1 Teaching Context and Objectives 24
9.2 Software and Infrastructure . 25
9.3 Outcome and Recommendations 25

10 Conclusion and Future Work 27
10.1 Conclusions on Project Organization in General 27
10.2 Conclusions on Organization of this Project 27
10.3 Tools and Infrastructure Development 27

F Appendix 29

2

1 Introduction

The introductory part of this report is written by the coordinators of the project,
Ulrik Nyman (AAU) and Jakob Lykke Andersen (SDU). The central part of the
report, Sections 3 through 8, is contributed by participants in the project, noted
in each of their sections. In this central part are reports on experiments with
using software to aid in teaching. In Section 2 we provide a very brief overview
of the aim of each experiment, and in Section10 we provide conclusions on the
project as a whole.

Outside the central report sections, when using we this is referring to Ulrik
and Jakob.

1.1 Context Within DIREC

This project, P12, was one of three predefined projects within Work Stream
12 (WS12) of DIREC1. It should be noted that on the surface it may seem
to intersect greatly in scope with one of the other predefined projects, P10,
Learning Technology for Improving Teaching Quality at Scale. However, in P10
the focus is on how to teach using technology, while we here in P12 focus on the
technology itself.

Due to the project being predefined, it did not as such have a true owner
with a vision, and the initial task was therefore to develop an actual project
with a more clear direction.

The funding structure for the project was predefined such that each of the
original partner universities of DIREC were allocated a relatively small amount
of funds (approx. 90 kDKK for CBS and 130 kDKK for the other universities).
As we can only directly administer funds at our own universities (AAU and
SDU), we needed to find proxies at the other universities to unlock the complete
project. In the middle of the project, the DIREC management decided to
redistribute the WS12 budgets based on which partners were actually willing to
participate in this project.

1.2 Existing Cloud Infrastructure for Teaching at Scale

As part of the initial project refinement we explored the possibility of using a
common cloud infrastructure for developing software solutions that would be
easily shareable among the participating universities. We therefore investigated
which infrastructure was already in place, and found multiple systems:

• AAU, AU, and SDU has an ongoing collaboration on UCloud2 through
DeiC3.

• KU has ERDA4.

• DTU has the DTU Computing Center (DCC)5.

1https://www.direc.dk
2https://ucloud.sdu.dk
3https://www.deic.dk/
4https://erda.ku.dk/
5https://www.hpc.dtu.dk/

3

https://www.direc.dk
https://ucloud.sdu.dk
https://www.deic.dk/
https://erda.ku.dk/
https://www.hpc.dtu.dk/

However, these systems are only available to their respective universities. It
was difficult to obtain information about how these systems have been used for
teaching, and we only learning about a few instances. Though note, generally
the systems are aimed at research purposes.

For teaching at scale it can become increasingly important with integration
into Learning Management Systems (LMSs). Our initial investigation revealed
that also in this area there is little alignment between universities, and at least
four different systems are in use (Moodle, Brightspace, itslearning, Absalon),
thus making development of a common software suite more complicated.

1.3 Communication and Commitment

Due to the highly distributed nature of the funding structure, an early goal was
to find a representative from each partner university, to be responsible for local
distribution of funds, promotion of the project, and in general act as contact
person. However, this had limited success, due to a variety of reasons: it was
during the early part of the project where the scope was still being defined, each
representative had very limited funds and thus less incentive and decision power,
and some representatives were rightfully skeptical of burdening colleagues with
tasks. A general issue we encountered was the basic task of getting information
to teachers about the existence of the project. As we only had access to our own
departments we had to rely on our representatives for forwarding information.
Even with successful forwarding, the messages can be easy to dismiss as spam-
like, especially due to the rather low amount of funds available. From meetings
in Work Stream 12, this is not a challenge isolated to this project.

1.4 Outline

The main part of this report consists of descriptions of experiments related to
the project (Sections 3–9). Most experiments were supported with funds from
the project, though the contribution by Florian Echtler, Section 4, is based on
previous experience.

In Section 2 we provide a brief summary of the experiments, and in the end
in Section 10 we conclude with recommendations for future work.

2 Summary of Experiments

The details of each sub-project are described in the following sections. In this
Section we briefly summarize the type of experiments being conducted.

Three of the experiments aimed directly for providing (semi)automated feed-
back on programming tasks for students in Computer Science and Software En-
gineering courses (see Sections 3, 4, and 5). The automation was realized using
a combination of Git for version control, various continuous integration (CI)
tools for executing tests, and some amount of custom software to manage the
setup. For example, the experiment described in Section 5 includes software for
teachers to give feedback and score assignments on aspects that can not be cov-
ered by full automation. In all experiments the tests are designed by teachers,
which implies a relatively large amount of work to set up a course the first time.

4

The experiments described in Section 6 and 7 aimed at extending existing
software platforms for learning, with the latter focusing on the core task of
creating more exercises and the former on enhancing the platform itself with
additional features.

Section 8 describes an experiment focusing on another aspect of running
courses. Here there were already existing courses using multiple software plat-
forms, but the issue was with onboarding of new teachers and teaching assistants
to such courses. The aim of the sub-project was to develop standardized and
unified guidelines for this onboarding.

The experiment described in Section 9 regards the development of two tools
used for planning of respectively exams and student project assignment. Here
the aim was to provide graphical interfaces for two existing tools, one for as-
signing students to groups based on preferences, and one for scheduling exams
such that students have a more even workload in an exam period.

5

3 A: Support System for Programming Projects

This project focused on developing support tools for programming projects, and
was coordinated by Lúıs Cruz-Filipe at University of Southern Denmark (SDU).
The software was developed by a student helper (Thomas Wulff Heissel), paid
for by the project.

3.1 Teaching Context and Objectives

The Bachelor programs in Computer Science and Mathematics at SDU include
a mandatory course on Introduction to Programming in their first semester
(course codes respectively DM574 and DM536).

One of the goals of the course is to teach the students to follow a contract
— developing a program that respects an interface that was previously agreed
upon, so that independent teams can work on different parts of the same project
simultaneously, and expect these parts to connect seamlessly. This is achieved
through a multi-stage group project, where the group develops three parts of
the same program independently, following a contract that is given to them.

To give them the possibility to test whether they are following the right
contract, the students should be able to test their development in the context
of the whole program.

3.2 Software and Infrastructure

The goal of this project was to develop a simple online platform to run a pro-
gram consisting of the students’ code together with a correct implementation
of the remaining components of the project. This platform should be easily
configurable, so that it can later be used in other courses without requiring
major changes. The starting point is a testing system previously used in an-
other course, which is not configurable and can only be extended by substantial
reengineering of the source code.

The platform we developed includes a correct solution of the whole project
(nine Python files). The students can access the platform through a browser,
where after authentication they are given the chance to upload a ZIP file. After-
wards, a container is created containing a copy of the correct solution; any files
uploaded by the students whose names match those in the project overwrite
the ones previously there. The project is then run on some predefined tests,
and the output is shown in a browser window. This may be correct output, a
transcript of any error messages generated while executing the program, or a
timeout message from the interface (if the program did not terminate after two
minutes).

All the information about the structure of the expected input and the format
of the tests to execute is written in configuration files specific for this project,
which can be edited by system administrators (including teachers).

The backend records some information for monitoring purposes, including
the details of each submission (usernames of the group members, timestamp, a
copy of the uploaded files, and the generated output). This information can be
visualized by administrators in aggregated form.

6

3.3 Outcome and Recommendations

With respect to the original objectives, the project was a complete success. The
interface was up and running by the time the students started working on the
project. There were only very minor adjustments that needed to be made, which
also allowed the student helper to spend some time analyzing the logs, propose
and implement some small improvements.

An evaluation of the students’ performance revealed two issues that require
attention in future editions of the course:

1. Some groups used the system as a testing interface, instead of designing
their own tests.

2. Some groups performed an absurdly high number of tests, sometimes re-
submitting their code every few minutes during a couple of hours.

3. The testing interface is extremely slow, due to the heavy use of containers,
resulting in an unexpectedly high number of timeouts even for correct
solutions.6

Regarding the first point, the course objectives and the project description
both clearly state that students need to argue for the correctness of the software
they write — either through documented self-explanatory code, in the case of
very simple functions, or by designing relevant tests. Due to the availability of
the test interface, several groups simply assumed that getting a positive result
from their submission meant that their program was working correctly, despite:

• the output from the test interface clearly showing that the program was
not giving correct results;

• the lecturer mentioning several times in the lectures that the test inter-
face was exclusively meant to check that they were following the correct
contract (in terms of function names and input/output types).

Regarding the third point, the timeout was increased to 3 minutes, and the
students were informed that timeouts were not necessarily indicative of problems
in their solution — as long as the output generated by their program before the
timeout was meaningful.

Based on these observations, we plan to implement the following changes in
future editions of the course.

1. Restrict the number of submissions to make the test interface a scarce
resource. The current plan is to limit to one submission per group per
day.

2. Change the output text to make it clear that “success” does not mean
that the program is correct, but only that it syntactically matches what
is expected.

If more resources are available, there are some additional changes that we
would like to consider.

6The official solution ran in around 3 seconds on the teacher’s computer. The timeout
given to the students was 2 minutes.

7

3. Currently, the interface is not interactive, meaning that the program runs
without interference and the users only receive the final output from fixed
tests. This limits the kind of projects that the students can be given.
We would like to expand the interface so that the students can give input
during execution.

4. The current platform relies heavily on containers, which was a design
choice of the legacy system due to security requirements from SDU. It
would be nice to investigate whether an alternative implementation can be
found that is less resource-intensive, in the interest of making the system
both faster and more environmentally-friendly (wrt. energy consumption
and heat/CO2 generation).

8

4 B: Teaching Software Engineering at Scale

In this section, we briefly describe a course conducted by Florian Echtler from
2018 to 2020 while still teaching at Bauhaus-Universität Weimar in Germany.

4.1 Teaching Context and Objectives

The course in question was simply called “Software Engineering”, and had been
taught before to an audience of 15–20 undergraduate Computer Science stu-
dents. However, after a restructuring of the educations, this course was now
intended for a different master study programme called “Digital Engineering”.
The audience now consisted of students who had already finished an undergrad-
uate engineering degree (mostly construction and electrical engineering), with
little to no prior programming knowledge. This led to the following challenges:

• Heavily increased course size, to about 50 students.

• Little/unevenly distributed prior programming knowledge

The end goal was still to give the students foundational knowledge of software
engineering, however, the practical part of the course needed to be adapted to
meet the challenges mentioned above.

4.2 Software and Infrastructure

Our initial step was to rebuild the exercises along a topic that might be more
relatable for the engineering students, which was building a raytracer. This
approach has several advantages:

• Easily produces visual output with a minimum of external dependencies,
writing a file is sufficient.

• Straightforward to write test cases for verifying correct operation, e.g., by
comparing the output value for certain pixels or vectors.

• Sufficiently extensible to illustrate multiple important software engineer-
ing concepts such as polymorphism and GoF (Gang of Four) design pat-
terns7, e.g., the visitor pattern.

To avoid having to manually extract and check every code submission, we
used Github Classroom instead of Moodle as a submission platform. This gave
us the opportunity to a) introduce students to a modern development workflow
using version control, b) provide them with a starting template including test
cases and build files, and c) use continuous integration (CI) tools for checking
the submitted code automatically against the test cases.

For the CI tooling, we opted to use Travis, which offered a free tier suitable
for our purpose and a seamless Github integration that would run the test
cases automatically after every commit. Since the course was last conducted in
2020, Github has introduced their own CI system with Github Actions which
offer the same functionality and would likely be preferable today, due to closer
integration.

7https://en.wikipedia.org/wiki/Design_Patterns

9

https://classroom.github.com/
https://www.travis-ci.com/
https://en.wikipedia.org/wiki/Design_Patterns

4.3 Outcome and Recommendations

One unexpected challenge we faced during the first iteration of the course was
heavy plagiarism of the exercise assignments. For subsequent iterations, we
tried to address this issue by a) making the course repositories private, and
b) using plagiarism detection software. We initially used MOSS, which worked
with varying degrees of success, and later switched to JPlag, which proved to
be slightly more reliable. For example, unlike MOSS, JPlag is able to exclude
template code from the comparison, which would otherwise be flagged as pla-
giarized.

Overall, there was a significant amount of setup work required for the initial
course iteration. While the workload for actually checking the assignments was
noticeably lower, the initial work for creating test cases and example solutions
that matched the test cases was extensive. Consequently, this approach works
best if it can be reused several times, with the same assignments (and possibly
slightly modified test cases, if the plagiarism issue persists across semesters).

The relevant lecture slides for this course are available as open educational
resource at https://github.com/floe/software-engineering, with a video
lecture recording on YouTube. Both resources are licensed under Creative Com-
mons Attribution-NonCommercial-ShareAlike 4.0 International License. The
exercises, code examples, and test cases are also available on request.

10

https://theory.stanford.edu/~aiken/moss/
https://github.com/jplag/jplag
https://github.com/floe/software-engineering
https://www.youtube.com/playlist?list=PLjEglKdMOevU2STTGq79duxTXDFuO-k1H

5 C: Automatic assessment of software assign-
ments: Scalable Teaching

Scalable Teaching is a web application used by the SDU Software Engineer-
ing professors to help them assess students’ software assignments. It has been
mainly used by Miguel Campusano (Assistant Professor) and Aisha Umair
(Teaching Associate Professor) during their courses.

5.1 Teaching Context and Objectives

The students from SDU Software Engineering learn several programming tech-
niques and designs that need to be assessed by their professors. However, the
large amount of students during the bachelor (around 100 students per course)
makes the assessment extremely challenging. Professors are expected to not
only grade students’ software assignments but also provide software engineering
quality assessment to their source code, as it is a critical component of their
learning and education.

In particular, professors face the following two challenges for both the cor-
rectness and quality of students’ solutions: 1) effective assessment of assign-
ments, exercises, etc., 2) providing quick feedback to students.

5.1.1 Case A: Web Technologies

In the first iteration of the Web Technologies course, Scalable Teaching was
used to grade students’ software assignments automatically. To allow this, the
tool implemented the Continuous Integration / Continuous Delivery (CI/CD)
technique, which automatically tests software when people from the software
team incorporate new features into the software.

Scalable Teaching uses CI/CD to automatically run tests when students
implement the features asked for in a particular software assignment. Then, if
every test passes, the assignment is considered complete. If not, the assignment
is considered a miss.

While this worked well, it did not provide granular feedback to the students.
It could have given feedback in an effective way on which part of the software
assignment failed or why. Moreover, a pass-or-fail assessment can be too hard for
specific assignments. Finally, the tool only provides feedback on the correctness
of the assignment but not on the quality of the source code.

In the next iteration of the Web Technologies course, Scalable Teaching was
updated to support 1) 100%-scale grading and 2) source code feedback. The
tool supported 100%-scale grading by dividing large tests into several small
tests, which are assigned a certain percentage of the total amount. A 100%
assessments mean that the assignment passed every test.

Source code feedback was implemented using the concepts behind source
code review, where a developer assesses the quality of the source code written
by another developer. Instead of doing this automatically, Scalable Teaching
provides a user interface that allows students to assess the quality of their fel-
low students, effectively implementing peer review in the context of software
assignments. This strategy aims to 1) give students feedback on the quality of
their code, and 2) introduce students to the concept of software development
peer review.

11

5.1.2 Case B: Advanced Object-Oriented Programming

This course requires educators to grade students’ code assignments using a
point-based grading system instead of binary (pass/fail) grading. Manual point-
based grading of programming tasks is, however, tedious and challenging. Hav-
ing to grade many students is not only cumbersome, but it can often become
hard to keep track of everything.

To address this, Scalable Teaching is used to grade the students’ assign-
ments more efficiently. This tool allows educators to define a rubric, where each
evaluation criterion is associated with a specific number of points. The tool col-
laborates with a VS code extension to directly combine grading criteria with the
student files, making it easier for educators to quickly review each rubric evalu-
ation criterion and ensure the student fulfills the requirements. Thus making it
harder to make mistakes. To minimize bias, the educator/grader is unaware of
who they are grading. Moreover, the student can see who graded his assignment,
the earned points, and the feedback.

5.2 Software and Infrastructure

Scalable Teaching offers several features designed to provide efficient and effec-
tive assessment/feedback of students’ assignments using Continuous Delivery /
Continuous Integration and source code review. The feedback can be provided
through comments, explanations/suggestions, or highlighting errors. In addi-
tion to the feedback, it also provides a means to track and analyze students’
progress in various course activities. It can accommodate a large number of
students and scales well as the number of students grows.

Scalable Teaching is a ready-to-use web application set up in an SDU server.
Nevertheless, the source code is open, allowing anyone to set up Scalable Teach-
ing on their servers. However, people setting up the tool should be aware they
must also set up the CI/CD server independently to allow automatic assessment.

This tool uses a component-based/modular approach, dividing the over-
all system functionality into independent, reusable components/modules. The
modules can be combined in various configurations to achieve the desired be-
havior of the system. To this end, the administrator/professor creates a course
and then creates tasks within a course. This is followed by attaching modules
to the tasks in order to configure them. The implemented modules are listed
below:

Mark as Done. This module allows students to mark their tasks as Done
upon completion, typically used for exercises, allowing them to track their
progress through a semester. The students do not need to handle anything,
nor does the professor check if they completed their tasks.

Link Repository. Some tasks are simple assignments that are listed as
a set of instructions for the students to follow. However, some more technical
assignments and exercises require using a predefined codebase or other libraries
to be available to the students. The link repository feature allows the professor
to use a repository from a GitLab server as a reference that students can consult.
This feature is significant when students do not need a new repository for each
task but simply need a codebase they can work on. This module is also a
precursor for other modules; specifically, the Template module requires enabling
this module.

12

Template. Once enabled, instead of just receiving access to a codebase,
the linked repository now functions as a starting point for the students. Upon
starting the assignment, students will receive a forked version of the linked
repository, allowing them to work on their solution. The last commit to the
codebase before the deadline functions as the final hand-in for the student.

Preload Repositories. This module works similarly to the previous one
but creates repositories for students ahead of time to avoid strain on the GitLab
server.

Build Tracking and Automatic Grading. This module allows the pro-
fessor to watch when students build assignments and provides valuable feedback
about when students are active during an assignment. As students push code,
the information about each build is logged. The build tasks module can also be
used to monitor if a student has passed the assignment in a pass/fail manner.
This is done by creating specific tests that run during build steps to ensure
students fulfill the assignment’s goals.

Subtasks and Automatic Grading. A binary pass/fail grade is not al-
ways good enough as it fails to provide much nuance for the professor. Subtasks
allow the professor to create small tasks that are part of the assignment, where
each subtask can be assigned a point value. The subtasks can be used with
automatic grading where build steps can be “linked” to subtasks, allowing the
professor to inspect which parts of the assignment they have completed.

Manual Grading and Feedback. Enables professors and TAs to manu-
ally inspect student files in the code viewer, giving them a brief view where each
subtask can be easily marked and commented on. This feature can effectively
distribute the tasks among selected teaching assistants (TA) to distribute the
workload equally. Student names can also be anonymized, such that the pro-
fessor or TA is never faced with the student’s name — both the student and
professor are given a pseudonym that allows students to inquire about their
grading by providing this pseudonym. Lastly, this module also enables peer
feedback, enabling students to comment on their peers’ (anonymized) code.

Project Files. This module protects files from unauthorized editing (by
the students). Specifically, some files are used to indicate what tests should run.
If the students change these, they could cheat the system by getting the build
to pass that would ordinarily fail.

Automatic Download. This module enables automatic download of the
students’ repositories after the task deadline. Assignments are kept for two
years, after which they are automatically deleted from the server.

5.3 Outcome and Recommendations

In this section, we group some of the outcomes, challenges, and recommenda-
tions we encountered when building and using Scalable Teaching in the context
of software engineering education.

5.3.1 Automatic Testing

The iterative approach of building a tool allows us to fix some of the early
limitations of the same tool. For example, we initially developed a binary au-
tomatic grading system, limiting grading possibilities and feedback. Then, we
implemented a 100%-scale grading system, which can be automatic or manual.

13

Nevertheless, we noticed that using automatic testing in the context of ed-
ucation can be pretty different than in a typical software development context.
Tests can not only provide correctness but also lead to solutions, limiting the
student’s range of possible solutions to just a few (or sometimes only one).
When using automatic testing, it is key to design and build proper tests to
assess correctly what the professor needs to know from the student.

5.3.2 Code Review Quality Assessment

Scalable Teaching provides code review quality assessment based on a peer re-
view system, where students review their classmates. To avoid useless or harmful
reviews, professors and teaching assistants can moderate the system and give
feedback on the code and the reviews. While this has worked well in the past,
and students appreciate the feedback, more research must be done to confirm
if this kind of review is helpful for students. Moreover, this review is being de-
signed as a post-assessment phase after the assignments are graded. For other
types of assignments, it may be helpful to include code quality assessment as
part of the grading process

5.3.3 Software Engineering Outside Coding Components

A key component of software engineering is to design valuable software for a
stakeholder, according to their requirements. After the design is done, the
software can be implemented. Scalable Teaching is not designed to grade or
provide feedback on the design component.

Usually, requirements and design decisions are handled using a report (i.e. a
PDF document). An interesting future work avenue for Scalable Teaching will
be how to handle these documents, especially if they are joined with an already
written piece of software. Professors usually review documents and source code
simultaneously, and Scalable Teaching can be extended to support this type of
evaluation.

5.3.4 Difficulty of Use for Students

Students are expected to learn how to manage source code during their educa-
tion. Therefore, they should learn to use a code repository tool (e.g. GitLab), au-
tomatic testing, continuous integration/delivery, programming languages, frame-
works, APIs, etc. These techniques and tools are essential for students to learn.
Still, they distract students from the fundamental complexity of tasks, especially
for students early in their education.

To focus students’ assignments, we can use interactive code execution di-
rectly in Scalable Teaching. This will allow students to work immediately on
their exercises without installing systems or worrying about configuration issues
by working directly on the web user interface instead of on their computers.
With this solution, students can focus on the fundamental complexity of the
assignment (solving the problem itself) instead of using time on the incidental
complexity (anything outside the problem itself, e.g., installation problems).

14

5.3.5 Difficulty of Use for Professors

While the platform itself is working, the module system and writing tests can
be complex for professors. Instead of using a module system, Scalable Teaching
should present several pre-load configurations for assignments, where professors
will select from what they need. For example, instead of loading Link Repository,
Template, Build Tracking and Automatic Grading, they should be able to pick
an automatically graded assignment from a specific GitLab repository.

Moreover, professors still need extra documentation to use the tool effec-
tively. Documentation can be provided by user manuals, videos, talks, etc.,
showcasing different features of Scalable Teaching.

15

6 D: Distributed Systems Graphical Interface

This project aimed at the creation of a graphical user interface for an existing
teaching tool. The tool is an emulation platform for teaching distributed systems
at Aalborg University (AAU). The project also involved unit tests and error
handling and detection.

This project was initially led by Peter Gjøl Jensen, who submitted the re-
quest for funding and selected the student to be employed, namely Thomas
Møller Jensen. Later, Peter stepped down since he decided to teach other
courses, and his co-chair Michele Albano took the lead on this project.

6.1 Teaching Context and Objectives

An important learning goal for problem-based learning (PBL) universities is
related to experiential learning, and in this context it was considered that the
course Distributed Systems required a platform to emulate the systems described
in the lectures. The course is taught at the 7th semester of the Computer Science
and Software educations, and recently also on the 7th semester of the CS-IT
and Data Science educations, all at Aalborg University.

Initially, the platform was developed by Peter and Michele, and by the Teach-
ing Assistants of the course. However, the platform was not user friendly ac-
cording to the students who used it, since it had no visualization of the emulated
systems, and it provided limited and non-intuitive feedback to the users.

With the goal of facilitating the learning process of the students, this project
aimed at fulfilling the following goals:

• adding a GUI to make the exercises more interactive,

• adding unit tests (for student self-assessment), and

• improve on error-handling and error-detection (e.g. infinite loops).

The project was carried out in 2022, during which Thomas was the lead
developer. During fall 2022, the improved platform was used in the course
Distributed Systems, both by the lecturer to demonstrate parts of the systems,
and by the students for experiential learning.

6.2 Software and Infrastructure

The code of the improved emulation platform is available as open source on
Github at https://github.com/DEIS-ools/DistributedExercisesAAU. The
platform is modular and allows two operation modes:

• a synchronous mode (also called stepping mode in the documentation),
where the execution is articulated into rounds. In each round, (i) all
emulated systems receive incoming messages, then (ii) all systems execute
their algorithm, then (iii) all systems send out messages if required by
their algorithm;

• an asynchronous mode, where the systems are scheduled independently
from each other. The only synchronization happens when a system waits
for an incoming message.

16

https://github.com/DEIS-ools/DistributedExercisesAAU

Figure 1: Graphical user interface developed in the project.

The platform consists of a number of Python files, and documentation. In
particular, the main folder contains

• a README that acts as documentation for the platform, and describes the
exercises for the Distributed Systems course;

• emulators folder, which contains the engine for both the synchronous and
asynchronous execution modes;

• exercise runner.py, which is run by the user to execute the emulator
via the command line;

• exercise runner overlay.py, which executes the GUI developed in this
project (see for example Figure 1);

• exercises folder, which contains the skeletons for the exercises, named
exercise 1.py for the first lecture, up to exercise 12.py for the last
one. These are the only files that should be modified by the students.

6.3 Outcome and Recommendations

After a first development of the system, the project was run in unison with
the execution of the Distributed Systems course in Fall 2022, to collect the
feedback of the students to steer the development effort. We can argue that the
project is a step forward with the digital transformations of teaching, and it
received positive feedback from the students. Still, during the project execution

17

a number of malfunctions were found by the students and had to be corrected,
which on the other hand acted as a quality assurance process for the platform.

The outcome of the project is usable in future Distributed Systems courses.
Still, a number of directions for improvement can be proposed.

First of all, the usability of the platform could be improved by adding inline
documentation of the GUI, and better error messages when the student develops
wrong code.

Moreover, unit tests for the exercises could be used not only to find out the
most common mistakes, but also to verify that the solution provided by the
student is correct. This approach would be inspired by best practices such as
test-driven development.

Finally, as the topics taught in the Distributed Systems course change over
time, the platform will require to evolve to cover the new topics with new
exercises.

18

7 E: Enhancing Cybersecurity Education Through
Developing for Haaukins

This project was conducted at the Department of Electronic Systems at Aal-
borg University. In collaboration with Andreas Knudsen Alstrup and under the
guidance of Jens Myrup Pedersen, this part of the report explores the impactful
endeavor of enhancing cybersecurity education through the development efforts
for Haaukins8.

7.1 Teaching Context and Objectives

This section highlights a significant initiative aimed at contributing to cyberse-
curity education through development for Haaukins. The project involved the
creation of challenges customized for Haaukins, a dynamic cybersecurity plat-
form designed to provide hands-on training and competitive experiences. These
challenges are hacking exercises that encompassed diverse domains including
reverse engineering, binary exploitation, cryptography, forensics, web security,
and miscellaneous fields, thereby offering a comprehensive training landscape.

The roots of this initiative lie in addressing a critical challenge within cy-
bersecurity education — the scarcity of skilled cybersecurity professionals. In
response, the endeavor aimed to spark interest in cybersecurity among young
individuals by delivering engaging and relevant learning opportunities. The
challenges developed for Haaukins were designed to align with the educational
goals of cybersecurity, equipping students with practical skills that mirror the
intricacies of real-world cybersecurity scenarios.

Moreover, these challenges aimed to bridge the gap between theoretical
knowledge and practical application. By actively engaging with cybersecurity
concepts, students were encouraged to cultivate critical and innovative thinking
while tackling complex issues with the challenges developed. The wide array of
challenge categories not only enhanced participants’ technical prowess but also
nurtured a hacker’s mindset, enabling them to discern and mitigate security
vulnerabilities effectively.

The project presented a series of challenges encompassing various domains,
each designed to test and enhance participants’ skills in different areas of cy-
bersecurity and penetration testing. Some examples of challenges are:

• In the realm of web exploitation:

– Challenge 1: Participants focused on bypassing authentication through
simple SQL injection (SQLi), highlighting the importance of secure
coding practices.

– Challenge 2: This exercise was created, a simulated e-commerce en-
vironment using Vue.js and Golang. It aimed to provide engaging
web exploitation challenges with a user-friendly experience and ro-
bust backend architecture.

– Challenge 3: This challenge required exploiting the search function-
ality to gain unauthorized access to user information using the SQL
UNION operator.

8https://www.cybertraining.dk/haaukins/#/

19

https://www.cybertraining.dk/haaukins/#/

– Challenge 4: A challenge in development, where participants hid
injected code as a product review to steal user authentication tokens.

• In the forensics domain:

– Challenge 5: Participants tackled steganography, uncovering hidden
data within an image and successive layers of data. The challenge
involved handling corrupted files, Base encodings, and Morse code
within a sound file.

– Challenge 6: A Modbus challenge revolved around Russia’s power
grid. Players exploited the Modbus protocol to set power plants to
zero, observing deactivation and energy production decrement.

– Challenge 7: Participants analyzed vulnerable router firmware com-
piled using OpenWRT, seeking a concealed folder using Linux tools.

• In the miscellaneous category:

– Challenge 8: Participants learned to hack an IP camera using the
RTSP protocol and the Cameradar tool. Accessing camera creden-
tials, they connected to the stream containing modified content with
the challenge flag.

These challenges collectively aimed to enhance participants’ cybersecurity
skills and deepen their understanding of various attack vectors and vulnerabili-
ties across web exploitation, forensics, and miscellaneous domains. The diverse
range of challenges provided participants with opportunities to learn and apply
techniques critical to securing digital systems and networks.

The impact of this initiative resonated through its integration into various
courses and teaching activities, especially within education programs such as
Cyber and Computer Technologies, as well as the Master’s in Cyber Security.
Additionally, its influence extended to community-based activities related to
Cyber Skills and De Danske Cybermesterskaber, where the platform and its
challenges found practical application.

The subsequent sections delve into the intricacies of Haaukins’ software and
infrastructure, the outcomes of these collaborative efforts, and recommendations
for future utilization. This collective endeavor plays a pivotal role in nurturing
the landscape of cybersecurity education, empowering individuals with hands-
on experiences that transcend theoretical concepts and enrich the collective
cybersecurity expertise.

7.2 Software and Infrastructure

The architecture and infrastructure of Haaukins represent a cornerstone of its
effectiveness in enhancing cybersecurity education. At its core, Haaukins serves
as a highly accessible and automated virtualization platform, catering to a wide
spectrum of users ranging from students to teaching staff. The platform’s archi-
tecture is designed to create a seamless and user-friendly experience, minimizing
barriers to entry and maximizing engagement.

Each virtual lab within Haaukins is composed of a Kali Linux machine and
a series of challenges, often implemented as Docker containers. These challenges

20

span various cybersecurity domains, covering a range of topics from reverse en-
gineering to cryptography. Participants engage with these challenges within iso-
lated environments, facilitating safe and controlled learning experiences. Access
to the Kali Linux machine is facilitated through Apache Guacamole, enabling
seamless and secure browser-based interaction, thereby eliminating the need for
complex setups on participants’ end.

Automation plays a pivotal role in Haaukins’ operation. Setting up an event
or class becomes a streamlined process, where teachers or organizers can se-
lect challenges and set parameters through a user-friendly web interface. This
triggers the automatic provisioning of labs and event websites, streamlining ad-
ministrative tasks and ensuring a consistent experience for participants. The
automation also extends to user registration, making it simple for participants
to self-register and be assigned to a specific lab.

The synergy between software and infrastructure is central to Haaukins’ suc-
cess. Challenges, being implemented as Docker containers, are lightweight and
portable, ensuring efficient resource utilization. This flexibility allows Haaukins
to operate across distributed servers, providing scalability to accommodate con-
current events with large participant numbers. Currently distributed across
servers at various institutions, the platform is in the process of reworking its
architecture to allow for even more flexible distribution based on available re-
sources.

In conclusion, Haaukins’ software and infrastructure embody a fusion of ac-
cessibility, automation, and scalability. The platform’s user-centric design and
automated processes enable educators to seamlessly offer diverse cybersecurity
challenges while fostering engaging and secure learning experiences for partic-
ipants. The ongoing evolution of Haaukins’ architecture further underlines its
commitment to continuous improvement, providing a robust foundation for the
future of cybersecurity education.

7.3 Outcome and Recommendations

This endeavor successfully developed valuable challenges for Haaukins, enrich-
ing the learning experience on the platform. These challenges, a result of this
project, have notably contributed to cybersecurity education.

In the initial stages of development, the process of onboarding and configur-
ing Haaukins challenges, along with effectively integrating cybersecurity learning
goals, posed obstacles for the developer. However, through close cooperation
with the Haaukins team, these hurdles were swiftly overcome. The collabo-
rative efforts and expertise shared ensured a seamless transition, allowing the
challenges to align cohesively with the educational objectives, thus enhancing
the overall learning experience for participants.

Covering various domains, these challenges engaged students with real-world
scenarios, fostering critical problem-solving skills. Seamlessly integrated into
Haaukins, they facilitated active participation and effective learning. Contribut-
ing to the Haaukins’ challenges library of more than 500 challenges, the exercises
developed hold substantial educational value, enhancing the platform’s depth.
Aligned with the project’s goal of enriching learning opportunities, they suc-
cessfully addressed specific aspects of cybersecurity education.

Looking ahead, this momentum will bolster Haaukins’ role in cybersecurity
education. Commitment to scalability, usability, and diverse content will sustain

21

the platform’s pivotal educational role.
Future endeavors entail continued challenge development, aimed at encom-

passing the latest Cyber Security knowledge. This ongoing dedication aims to
equip cybersecurity professionals with necessary skills to tackle evolving digital
challenges. As the platform advances, it signifies contributors’ instrumental role
in cybersecurity education advancement.

22

8 F: Software Infrastructures for Teaching at
Scale: The Case of Introduction to Statistics
at Technical University of Denmark

The work by Md Saifuddin Khalid and Jiayan Wu is a larger sub-project, and
their report is included in Appendix F.

23

9 G: Web Apps for Education Management

This project aimed at developing two web interfaces for previously developed
tools for student-project assignment and exam scheduling. The purpose of this
was to make the tools more broadly available and more easily usable. The
project participants were Marco Chiarandini, Associate Professor at the De-
partment of Mathematics and Computer Science of the University of Southern
Denmark (SDU) and Andreas Twisttmann Askholm, student assistant. The
project ran from July 10, 2023 to October 15, 2023 and has been financed with
75,000 DKK. All budget has been used to pay the salary of the student assistant,
Andreas.

9.1 Teaching Context and Objectives

The two software tools developed in the project are used to help teachers at SDU
in managing their time while maximizing student satisfaction. They address the
following challenges in the organization of teaching activities, which are common
in the context of higher education:

• Assigning students to project topics and supervisors. The challenge is
finding an outcome that satisfies both students and advisors. In a free
process, where students make private agreements with advisors efficiency
is lost. The most popular advisors become overloaded, first movers get
better options, early agreements can be undone or are regretted. In large
settings a free process is simply not viable.

• Scheduling the dates of oral and written exams. The challenge is finding
schedules that maximize the distance between exams for each student
while also including constraints on the teacher presence and the room
availability.

Concretely, at SDU we face the student-project assignment challenge in the
following activities:

• BADM500, Bachelor project in Computer Science, approx. 40 students for
20 project topics.

• K04, Internship in the Master in Psychology, approx. 150 students for 70
internship topics.

• FF501, First year project the Faculty of Science of SDU, approx. 240
students for 100 project topics.

Further, we face the exam scheduling challenge in the following case:

• Every semester at the Faculty of Science of SDU, approximately 200 exams
for 2400 students to be scheduled in 20 available days.

The student-project assignment tool developed helps in managing the distri-
bution of students to advisors or supervisors in project work. It streamlines the
process by collecting in a first phase the descriptions of the offered projects with
a desired size of the group of students working on them and capacity limits. In a
second phase it collects the student preferences towards the projects. In a third

24

phase an algorithm finds an assignment maximizing students’ satisfaction while
taking into account capacity limits of the advisors. Most importantly, it brings
fairness in the treatment of students and balance in the work load distribution
of the advisors. The assignment is published together with statistics about it
and the possibility for the administrators to compare alternatives due to small
changes in the offered capacities of the advisors.

The exam scheduling tool collects in a first phase the data about the ex-
ams to schedule, the required durations and the restrictions imposed by teacher
availability and student registrations to the exams. The data collected con-
tain often errors that must be corrected or invalidated. In a second phase an
examination schedule is computed and outputted.

9.2 Software and Infrastructure

The project focused on the development of a front-end consisting of a web
interface. The back-end are two existing Python modules that implement the
algorithmic solution to the combinatorial problems that are at the core of the
tools. The web interface developed in this project are written in Python and
Django. They use an SQLite data base and they are deployed in SDU virtual
servers with the continuous development tools Git and Jenkins.

The Python module for the algorithmic solution of the student-project as-
signment is described in this publication:

Marco Chiarandini, Rolf Fagerberg, and Stefano Gualandi. Han-
dling preferences in student-project allocation. Annals of Operations
Research, 275(1):39–78, 2019.

The Python module for the algorithmic solution of the examination schedul-
ing is unpublished. Both of the modules implement mathematical programming
models of the problems, that are then solved by an external mixed integer pro-
gramming solver. They have been extended to interact with the front end.

Account management for the web application has been handled via Django.
It supports both SDU Single Sign On via Microsoft Authenticator and local
accounts. The latter is meant for testing purposes and are kept hidden from
users. We exposed facilities for editing the database. However, we left the
management of user accounts to the Django administration interface. Hence,
at the current stage the creation of new accounts can only be done by the main
administrators.

The tools are publicly available at:

• Adsigno: https://adsigno.sdu.dk/

• Examino: https://exam.imada.sdu.dk/

The arrival page asks for the credentials to authenticate the user. Therefore,
the content is only available to registered users. Users will then see different
content depending on their role which can be: student, teacher or administrator.

9.3 Outcome and Recommendations

It has been a challenge writing these two applications in the short time frame
available and with only the basic level of expertise of a student assistant. Above

25

https://adsigno.sdu.dk/
https://exam.imada.sdu.dk/

all it has been challenging testing the application from the point of view of each
user role. After the end of the project, development work was still left and
was taken up by the project leader. In spite of this, we succeeded in using the
system Adsigno in the two editions of the courses K04 and BADM500. The
road is open now for the future use of this system.

In the future, we wish to improve the submission of project descriptions
which currently can happen either via spreadsheets or via an online form. Above
all, currently there is little control to the format of such descriptions and it is
not possible to include pictures. Another unfinished feature is the automatic
generation of a catalog of project topics. Finally, from the algorithmic point
of view, it would be interesting adding preferences also from the side of the
advisors towards the students.

At the time of writing the system Examino needs further development and
testing. It will be used in the scheduling of exams for the new semester (Spring
2024) but probably only for the data collection phase.

Overall the project delivered one finished web app and one that necessitates
further development. The development and the inclusion of several tools and
technologies resulted more challenging than foreseen. The complexity of systems
built to interact with real users can never be overestimated.

26

10 Conclusion and Future Work

The conclusion of the project is divided into three parts concluding on three
different aspects, described in the following three subsections.

10.1 Conclusions on Project Organization in General

These lessons are intended as advice to a potential DIREC 2.0. The lessons
learned from the initiation and scope setting of this project are:

• Ensure clear and motivated ownership of each DIREC project. This
project was predefined in the initial DIREC proposal without any clear
plan for who should actally carry out the project.

• Collaboration across universities is difficult. Everyone is busy and must
prioritize their time. Convincing people to spend time on a project with
minimal funds, is very difficult.

• Project managers should be in control of the entire budget of their project.
Distributing the budget across multiple universities requires distributed
control of the funds, which naturally hinders progress.

10.2 Conclusions on Organization of this Project

These are the lessons learned on the general setup of common software infras-
tructure for teaching at scale.

• The universities participating in DIREC use many different technologies
for supporting teaching, e.g., learning management systems (LMSs) and
cloud infrastructure. This can make reuse of software across universities
difficult.

• Freedom of use of technologies and infrastructure is different between
universities. Some universities have policies for what software can be
used, which teachers must follow, while at other universities the individ-
ual teacher has almost complete freedom to experiment with new software.

• Despite the declared intention of collaborating within DIREC, the willing-
ness seems in practice to be highly influenced by local policies, resource
constraints, and available project funds.

• There are many teachers that are interested and willing to experiment
with new technologies, but have resource constraints that make it difficult
to carry out experiments.

10.3 Tools and Infrastructure Development

To really support the ease of teaching at scale, tools have to be developed for
the given infrastructure that can interact with the surrounding software.

• With the limited funds that each of the sub-projects have been allotted
we have still seen a significant amount of progress that has helped the
teaching effort in those course.

27

• There is quite a lot of interest in automated feedback mechanisms, both in
developing new setups and in enhancing existing setups. A continuation
of this project could concern a consolidation of effort, to not duplicate
systems, but accelerate the development of fewer, reusable systems.

• As we see from the Haaukins project in Section 7, even already success-
ful projects that are being used, needs continuous funds to develop new
content.

• As we can see from the sub-project at DTU (Section 8), even when tools
are available there is still a considerable amount of effort left in imple-
menting them in an organization. Both in regards of on-boarding new
teachers, TAs, and ensuring the IT support for the tools.

• From the project by Marco Chirandini (Section 9), we see that teaching
at scale also requires tools at higher level than individual courses, e.g., for
planning and resource allocation.

If a centralized effort with common tools is a desired goal for DIREC going
forward, then we recommend that a lot more resources are to be put into the
effort, and political power at higher levels than individual teachers has to be
behind it. However, we do not think that this currently is the right approach.

Instead we suggest that tools and approaches are funded in a grass-roots
manner, similarly to what effectively happened in this project, to such an extent
that they can become stable tools. This could both be tools explored in this
report, but also other yet undiscovered initiatives.

28

F Appendix

The text starts on the next page as it is a directly included PDF.

29

1

Software Infrastructures for Teaching at Scale: The Case of
Introduction to Statistics at Technical University of Denmark

Project# DIREC P12

Md Saifuddin Khalid & Jiayan Wu
Centre for Digital Learning Technology (LearnT)

Department of Applied Mathematics and Computer Science, Technical University of Denmark

Project Report
Project Co-Funded by

Digital Research Centre Denmark (DIREC)
https://direc.dk/master-training-network-ws12/

2

Table of Contents
1. Introduction .. 4

2. Context and Methods ... 4

3. Analysis and Results .. 5

3.1 Journey of course instructors through software channels ... 5

3.2 Journey of the coordinators of Teaching Assistants through software channels 8

3.3 The five teaching-related tasks and the use of various software systems 11

3.3.1 Communication .. 11

3.3.2 Lecture ... 11

3.3.3 Exercise .. 11

3.3.4 Projects .. 12

3.3.5 Final Exam .. 12

4. Discussion .. 14

4.1 Piazza for Discussion: Pilot Study in Spring 2023 .. 14

4.2 EdStem for Discussion: Pilot Study in Fall 2023 .. 15

4.3 Brightspace LMS (DTU Learn) for Discussion .. 16

5. Conclusion ... 19

Acknowledgement .. 19

Appendix I ... 19

Interview Guide for interviewing course instructor and coordinator .. 19

Appendix II .. 20

Instructions for direction of Introstat projects ... 20

General .. 20

Correction instructions ... 20

Entry sheet .. 20

Set up navigation bar on LEARN ... 21

TA Hiring .. 21

Preparation for the course .. 21

A simple check list with todo for each week .. 21

On streaming ... 23

Feedback to students .. 23

Projects ... 23

Update the project status list ... 24

Developing project .. 25

Weeks for deadlines (works for fall, but usually needs to be modified for 02323 in spring) 25

Previous semester dates ... 26

3

Administration of projects in Introstat ... 27

Exam .. 27

Set up of exam .. 27

On the exam day ... 29

Calculating the grades after the exam .. 29

Appendix III ... 30

Links to Video guide .. 30

4

1. Introduction

This project report informs software infrastructures for teaching two introduction to statistics courses
at the technical university of Denmark, offered by the department of computer science and applied
mathematics. The two statistics courses include various software-based services and custom-built
applications, which are used collaboratively by the teaching roles. The software environments,
referred to as channel henceforth, include teaching content, formative and summative evaluation,
and the information communication among the lecturers, teaching assistants, exam administration,
and student support services. In this report, the channels refer to the software infrastructure and the
term channel is adopted from the service innovation discipline. Furthermore, teaching at scale refers
to teaching large courses comprising 100+ students and teaching includes all activities by the teaching
roles, that is, not limited to lecture and exercise facilitation. The courses are defined as large courses
(100+ students in each course) and given particular attention.

One of the central problems for the teaching team of large courses is onboarding new teaching roles
and teaching assistants in the team for teaching introduction to statistics as there are too many
software systems including the expected ability to understand, operate and code using multiple
systems and languages. While the students’ feedback and overall evaluation of the courses are
consistently acceptable, the new members of the teaching team and teaching assistants expressed a
lack of clear overview and difficulty in learning the process. So, this project contributes by providing
visual journey map and descriptive guidelines for onboarding new teaching roles responsible for
teaching introduction to statistics and the software infrastructures adopted for teaching or creating
content at scale.

The broader objective of the project was to experiment with new software infrastructure and toward
that goal Piazza was adopted for the purpose of reducing students’ emails reaching the inbox of one
course instructor. In Fall 2023, EdStem platform was being tested as an alternative to Piazza as EdStem
can also support running R, Python and other codes in one as part of the editor on the platform. The
website, shared resources among teaching roles, and other resources have been moved to DTU
Compute’s GitLab. Furthermore, during summer 2023, it has been decided that the introduction to
statistics course will be offered with Python as the problem-solving language instead of R. It has been
decided by the boards of studies that the foundation programming language will be Python, which will
be used in foundation mathematics, programming, statistics, and software development courses
simultaneously. Therefore, from Autumn 2024, the previously developed scripts for generating book,
exam questions, assessment rubrics, generating exam results etc. must be changed along with
development Python-based statistics textbook according to the existing curriculum. Despite the
changes, the journey maps and description of activities in this report is expected to remain as a useful
resource for the course instructors, teaching assistants, coordinator of teaching assistants, and study
administration.

2. Context and Methods

This project is part of the education stream of DIREC and project number 12. The DIREC P12 project
team agreed on the following broader questions for all the partners. The context of this project are
the two courses offered by the department of applied mathematics and computer science, technical
university of Denmark (DTU).

1. In which course (or other teaching activity) was the experiment conducted? – Introduction to
Statistics (02323 & 02402)

2. What was the initial purpose? E.g., which learning goals or resource challenges were you trying
to address? – to reduce difficulty in onboarding new instructors, TAs, and consistently following

5

the diverse software/tools involved errors and rework. The alignment and coordination in the
teaching team cause issues in the learning, information communication and interaction process.

3. An elaboration on the challenges/problems/limitations of the setup. What was the result in
relation to the initial purpose?

- 1. Dilemma: One platform that consolidates all desired services, reducing rework and
streamlining coordination, is currently unavailable. On the contrary, managing the diversity
of platforms (channels), timelines, and coordination for the teaching team is a complex task.

- 2. There are too many not-so-user-friendly documents that course instructors need to read,
remember, and coordinate as part of onboarding and teaching the course.

4. Recommendations for future use of this type of setup. What would the next step be? if any steps
are feasible.

– A journey map or mere mapping the tools (as channels) from the perspectives of teachers, TAs,
and students along with the timeline for the interaction through different channels can be made
and scheduling notification based on the journey map with support from a secretarial role are
expected to improve the experience of teaching, learning and coordination. The lack of resources
(man-hours) requires the teaching roles to take up many administrative coordination tasks.

5. A short description of the software and infrastructure setup. This report presents the description
of the various inter-connected software used.

For the semi-structured interviews, the interview participants of this project include course
instructors and the coordinators of teaching assistant (TA). In this project, 3 course instructors and 2
coordinators of teaching assistants involved in “Introduction to Statistics” were interviewed.

Within this project, concomitant observations were garnered during interviews with participants.
Throughout these interviews, participants elucidated their utilization of software and IT
infrastructure intrinsic to teaching activities, elucidating the intricacies of their workflows. This
observational approach facilitated the discernment of challenges and user pain points embedded
within the landscape of teaching activities.

3. Analysis and Results

For teaching the introduction to statistics (02323 and 02402) courses there are four roles involved at
DTU Compute. The analysis and results section include (1) the journey maps of course instructors and
the coordinators of the teaching assistant (as the role shared tasks of a course instructor/coordinator),
(2) five main teaching-related tasks involving various software systems.

3.1 Journey of course instructors through software channels
Only two roles, namely, course instructors and the coordinators of teaching assistant, and their
journeys are analysed for mapping the software infrastructure (referred to as channels). Based on the
interviews and observations on the use of the different tools, Table 1 summarizes and presents a
pseudo journey map of the course instructors. The table 1 summarizes the pains and gains for defining
the scopes of improvement.

Table 1. Journey of Course Instructors through software channels

6

Activities &
Channels:

Software and
Infrastructure

Description of Activities Gain (+) and Pain Points (-)

Course catalogue:
https://kurser.dtu
.dk/

The course catalogue is updated by
the course coordinator in
coordination with the study
secretary and submitted for
approval by the study board.

- The system allows showing only one
language but the 02323 is offered in
English in Fall and Danish in Spring.
02402 is offered in Danish in Fall and
English in Spring. The students get
confused.

Course Website
on GitLab
https://lab.compu
te.dtu.dk/users/si
gn_in
https://02323.co
mpute.dtu.dk/
https://02402.co
mpute.dtu.dk/

1. Modify content on website by
editing the files under pages, which
are loaded as the content and links;
update materials for the students
(exam schedule, Slides, R codes,
textbooks, other materials).
2. Upload PDF versions of
PowerPoints formatted content
generated using Latex-coded file
compilation and upload using SCP
through DOS-command lines (in
Windows).
3. Solution files of exams are
uploaded and linked right after the
exam duration ends.

- Annual academic calendar including
the non-teaching weeks need to be
checked to manually update the dates.
-The lecture and exercise venues along
with other deadlines need to be
updated manually before every
semester starts.

Subversion (SVN):
Sharing Scripts,
Slides, Exams,
Guides

1. The teaching team stores and
shares all course content by
organizing those in an SVN Folder.
All the latex scripts for generating
lecture content, exam questions,
book, exercise questions and
solutions are shared through the
folder. SVN folder contains
instruction guides and notes, exam
folder for scripts and codes shared
for collaboratively generating the
exam files (R files, R markdown
files). Teachers manage the files on
GitLab in the SVN folder.
(Bookkeeping)

+ Teaching team share content through
subversion.
- Lacks version control: users must
always update before committing new
files and sometimes creates confusion.

Brightspace
Learning
management
system.
https://learn.insid
e.dtu.dk/

Students Hand-in Assignment,
feedback, communication, files,
information, quiz,
Teachers edit on the admin page.
Communication between students
and teachers.
Announcements by teachers for
annotated slides, information on
FAQs etc.

-Difficult to make grade or quiz on
Learn.
-The UI needs to be more user-friendly,
there is a gap of generations.
- Students send too many emails
regarding their mistakes during
submission or requesting extension.

Panopto Video
Recording and

In both Danish and English,
recorded class lectures and

+ Students can access the video
lectures.

7

Sharing:
Podcasts/Recorde
d Videos

activities are edited as short-length
videos and structured as topics.

- the number of students participating
in the class have reduced significantly.
- Some of the videos are not accessible
and were not tested after migrating
from the previous repository.

Project Rubric
creation,
calculation etc.

1.Course instructor use R scripts
(update on SVN) to create rubric as
excel files.
2.Course instructor use Google
form to collect feedback from TAs,
then the coordinator or course
instructor can know their
preferences.
3. Course instructor assign projects
based on TAs’ preferences.

- Lack of a whole picture of assessment.
- Need to create a new file every year
manually.

Subversion (SVN)

Checking TAs hours on SVN.

- Needs to run the script manually
every start of the semester.

TA Hiring:

1.Use R scripts on SVN to find out
good students/Previous TA, send
out emails to recruit them.
2.There is a folder in SVN, course
instructor can find the names of
TAs in the last year.
3. When TAs get recruited, their
name will be forwarded to a new
group.

- Need to do it every semester

TA onboarding Course instructors create a
correction guideline for TAs on
SharePoint.

Discussion Forum
Piazza or Learn
DTU
https://learn.insid
e.dtu.dk/

Teacher answer students’ questions
on Piazza or Learn DTU.

Students Ask questions, see questions
from previous questions, anonymous.
Students can search information.
- Questions fresh too fast, some
questions are hard to keep track of.

Projects:
Submission

Brightspace Learning Management
System (LMS): learn.dtu.dk. The
assignment feature of the LMS is
used. For each of the two project
submissions, students can choose
from four different topics.

Students submit assignments and TAs
provide feedback in bulk

Projects:
Assessment &
Feedback

1. From the LMS, all the
submissions under the four
different topics are downloaded
and assigned to 13-15 teaching
assistants (TAs) by using Microsoft
SharePoint.

Classroom
Engagement,

Kahoot & Socrative are used for
engaging students during the class.

+ Gamified engagement of students
during the class

8

Kahoot &
Socrative
Exam assessment
and Grading
Subversion (SVN)

1.Use R Script, Sweve, and Latex to
perform exam grading.
2.Use email to send out the results
to students.
3.Export exam responses from
Digital Exam & List of Participants.

Q&A System:
Piazza, EdStem &
Discussion/Messa
ge via LMS

Pilot: Piazza in Spring 2023.
Pilot: EdStem in Fall 2023 due to
the option for compiling code in the
message box.

+ One Q/A space for all introstat (02323
& 02402) students.
+ One of the members from the
teaching team can respond to all
students in both introstat courses.
- Some students still continue to send
emails about projects/exercises.

Book/e-Book Update based on students’
feedback/comments and compile
the R script for generating the pdf
version of the e-book.
Send the e-book updated version to
the bookstore for printing copies
for students
https://www.polyteknisk.dk/

- The periodic update of the book is an
additional task that needs follow-up by
the team.
- Issues reported by students regarding
the book cannot be reported in one
environment for keeping track of.
- The updated chapters need to be
generated separately and updated on
both websites.

Area9 Rhapsode
Adaptive Learning
Platform

The platform’s course environment
is created as an additional resource
for learning. The accounts are
created by importing the list of
registered students from
https://deltagerlister.ait.dtu.dk/del
tagerlister.asp and students are
sent email notification by the
course coordinator with URL for
activating/enrolling in the platform.
Periodically, members of the team
look at the issues reported by the
students and update the content
and activities on the platform.

- not mandatory and rate of
use/completion is less than 5%
- time required to create account, send
activation link, and troubleshoot is an
overhead administration for the course
coordinator/instructor
+ some students spend quality time
and send feedback for correction.

3.2 Journey of the coordinators of Teaching Assistants through software channels
As coordinators of teaching assistants, one or two PhD students from the department support the
teaching team by coordinating the team of teaching assistants by allocating two mandatory
assignment reports submitted by the students. In the following table, the journey of these project or
assignment assessment coordinators containing the software infrastructure, activities, and pain points
are presented.

Table 2. Journey of coordinators of Teaching Assistants through software channels

9

Activities & Channels:
Software and
Infrastructure

Description of Activities Gain and Pain Points

Project Assessment,
calculation etc.
R Script, Sweve, Latex and
email

Coordinators of teaching assistant refer to
the correction guideline for TAs.
The process is as follows:
1. The students upload their projects to
one of four different assignments on DTU
Learn (one for each project type)
2. The coordinator download all the
project files from each of the four
assignments and save them in four
different folders (again one for each type).
3. The coordinator runs a script that
summarizes how many projects of each
type have been handed in.
4. The coordinator manually distributes
the (amount of) projects onto the different
TAs taking into account the individual TA's
wishes. TAs have prior to this been asked
how many projects they would like to
correct and which types of projects they
would prefer to correct.
5. The coordinator input the numbers into
the R script (from point 3).
6. The R script produces correction sheets
for the different TAs and zip files
containing all the PDFs of the projects that
the TA needs to correct.
7. The coordinator upload to SharePoint
where the TAs can enter points for the
individual questions in the project.

-Need to do it four times
a semester (two times
for each course,
including distributing
reports and processing
results), coordinate and
distribute the projects
based on TA’s number
and preferences.

Discussion Forum TAs answer students’ questions on Piazza
or Learn

+Students Ask
questions, see questions
from previous questions,
anonymous
+Students can search for
information.
-Piazza is hard to keep
track of students’
questions and it
increases TA’s workload.

Projects: Submission Brightspace Learning Management System
(LMS): learn.dtu.dk. The assignment
feature of the LMS is used. For each of the
two project submissions, students can
choose from four different topics.

Students submit
assignments and TAs
provide feedback in
bulk.

TA can choose to
download all the files
from SharePoint in a zip-
file that the coordinator

10

has produced, or they
can choose to download
them themselves from
DTU Learn.
Sometimes they just
annotate the projects in
DTU Learn and will
never have to download
the files.

- Excel tables are very
poor, and it is difficult to
use, because the table is
very large, the content
of the cells is poorly
readable.

Projects: Assessment From the LMS, all the submissions under
the four different topics are downloaded
and assigned to 13-15 teaching assistants
(TAs) by using Microsoft SharePoint.
TA can correct them locally or on Learn.

The process is as follows:
1. Download all the reports in bulk,
According to the total number of project
files, all projects are evenly assigned to all
TAs,
2. Send out tasks to different TAs by email.
3. TA refers to the correction sheet on
SharePoint
4. TA corrects the reports and gives
feedback (They can do it on LEARN directly
or make a local PDF correction file and
then upload it to LEARN)

TAs upload corrections
(points for each answer
in the project
assignment) to
SharePoint in the files
(excel) that the
coordinator created for
them.
TAs give feedback on
DTU Learn either as
overall comments, as
annotations directly in
the files in DTU Learn, or
as annotations done
locally on their own
computer and then
uploaded to DTU Learn.

- Excel tables are very
poor, and it is difficult to
use, because the table is
very large, the content
of the cells is poorly
readable.

-The scripts being old
and written to / for R
using linux, there are
often problems
occurring when trying to
run the scripts on
multiple platforms

11

-No plagiarism check, it
would be nice with an
objective check.

3.3 The five teaching-related tasks and the use of various software systems

The course activities can be broadly categorized intro five: 1) Communication 2) Lecture 3) Exercise,
4) Projects 5) Final Exam. For the different course activities, various software infrastructures and
procedures are adopted. Based on the interviews, observations, and experience, the activities are
reported followed by software/channel-focused journey maps.

3.3.1 Communication
The communications between course instructors and students mainly take place on DTU learn
(Brightspace LMS) using the announcement. Piazza and EdStem platforms were used during Spring
2023 and Fall 2023 respectively as part of DIREC P10 project.

Students’ inquiries, internal collaboration among the teaching team members and the teaching
assistants are communicated via emails. In most cases, students initiate communication and course
instructors respond to their questions. Piazza was adopted to reduce the students’ emails as there
was no discussion forum post on the LMS and students used to email instead. EdStem platform pilot
(Fall 2023) was conducted as the platform included most frequently used programming code
compilation (including R and Python).

3.3.2 Lecture
Before the semester, all lecture content including the slides and handouts are recompiled and
uploaded by the lecturer responsible for the semester. Students are informed that the slides might be
updated just before a lecture starts or right after the lecture ends. Kahoot used during the lectures
are shared among the teaching roles.

Course instructors need to manually update course information (including exam schedules, links to
textbooks and slides, and deadlines, etc.) through Gitlab before the start of each semester. They also
need to update and manage course-related files in SVN. Additionally, the shared files used in the
course (including scripts and operation guides, etc.) are also in the SVN folder.

3.3.3 Exercise
Exercises are usually carried out in the form of practice sessions. The course instructors use email to
notify and assign coordinators of teaching assistants to specific classrooms to provide help to students
and answer questions.

To support the exercise, Area9’s Rhapsode platform access is given to the students during the
beginning of the semester. The adaptive learning platform allows students to exercise in self-, but
students report undesired repeated activities like a loop, but the percentage is very low in the first
two weeks of the course, the course instructor creates access based on the enrolled student list1 and
sends announcement containing a URL for getting access to the system. One issue is that the students
who join later in the course, usually send email to the course instructor and access for each student
are required be created separately. The coordination task becomes time consuming for the course
instructors and if students leave the course, then the course instructor needs to identify the students

1 https://deltagerlister.ait.dtu.dk/deltagerlister.asp

12

who dropped out the course then need to renew the list of students. Usually, the students retain
access and are not removed from the system,

A custom-built quiz environment complements the exercises, but it does not keep any record of
students’ access to and interaction on the platform.

3.3.4 Projects
Students are required to submit two mandatory project reports, including the option for re-
submission if not passed/approved in the first attempt, and submitted and feedback provided through
the learning management system’s “assignment” feature. To reduce overhead administration, one
PhD student plays the role of a coordinator of teaching assistants and responsible for allocating the
submitted projects and coordination of assessment.

The procedure is as follows.
1. The students upload their projects to one of four different assignments on DTU Learn (one for
each project type)
2. The coordinator of teaching assistants (TA) download all the project files from each of the four
assignments and save them in four different folders (again one for each type).
3. The coordinator runs a script that summarizes how many projects of each type have been handed
in.
4. The coordinator manually distributes the (amount of) projects onto the different TAs taking into
account the individual TA's wishes. TAs have prior to this been asked how many projects they would
like to correct and which types of projects they would prefer to correct.
5. The coordinator input the numbers into the R script in SharePoint. (From point 3).
6. The R script produces correction sheets as Excel template for the different TAs and zip files
containing all the PDFs of the projects that the TA needs to correct.
7. TAs can download the project zip file on Learn or read the PDF file on learn directly. If the zip
contains code, TAs will download it and run it on local computer. （R Script on SharePoint was used
to edit contribution).
8. TAs refer to the correction guide on SharePoint, upload the correction file and comment to Learn,
or they can leave comments on PDF file on Learn.
9. The coordinator upload to SharePoint where the TAs can enter points for the individual questions
in the project.

3.3.5 Final Exam
Activities for the final exam
For the final exam, the process includes the following activities for the IntroStat team and the
procedure involving the digital systems are documented subsequently. For the final exam, the
activities of IntroStat team are as follows:

1. IntroStat members agree on exam question contribution role, each of the members prepare

exam questions, and submit in the shared space.
2. The coordinator checks the submission according to agreed-up deadlines, sends early reminders,

and adjusts tasks as appropriate. The process includes preparing the English version of the
questions, a correction round by another IntroStat team member, and the final question
generation by the coordinator final check and approval internally by the team. Then a Danish
version of the questions is prepared by the team members for their respective questions in
English and then native Danish language speaker in the team proofreads.

13

3. Coordinator sends the English and Danish versions of the questions including the solutions to the
questions to the censor for review and approval,

4. The coordinator (in collaboration with course instructors, if required) set up online MCQ exam
system & set up a test MCQ exam using a previous year’s question so that students are prepared
for the online environment for the exam,

5. During the exam, the coordinator and one of the course instructors answer students’ queries at
the exam halls in collaboration with the exam office.

6. The exam coordinator uploads the exam questions with solutions on the course websites and
send announcement through the learning management system that the question has been
uploaded.

7. Exam coordinator export students’ scores for the online exam system,
8. The exam coordinator analyses the students’ scores,
9. Exam coordinator handle errors or other factors regarding the exam question (if any),
10. The exam coordinator identifies the cut-off points for the grading according to the Danish 7-

point scale,
11. Exam coordinators send email to Introstat team for internal approval regarding grading cutoff

points,
12. Email external censor (and CC Introstat team) for getting approval about the grading cut-off

points,
13. Submit grades of students using the script-generated content
14. Exam coordinator and course instructors collaboratively send announcements to the courses

that the grades have been submitted and remind about the date and procedure for re-exam.

Type and point system of the final exam
The final exam is a multiple-choice 30-question exam, each containing five options, awarded five
points for correct answer, and penalized one point for incorrect answers. The exam questions are
contributed by an introduction to statistics teaching team, typically comprised of five assistant or
associate professors, who plan and coordinate the task using a shared Excel file in their shared SVN
repository. An example of the exam plan is shown below:

14

Figure x. Exam preparation and coordination plan

During a periodic IntroStat meeting, the team members take the responsibility of making questions,
corrector/reviewer, and coordinator. For the 02402 course includes Two-way ANOVA and the 02323
course does not. So, for replacing three questions from two-way ANOVA, typically the examination
coordinator makes alternative three questions from chapter one for the 02323 students.

Exam question editing and coordination process
Course instructors use relevant R scripts to create exam questions (MCQ), then test and run on R
studio and Latex. During this project, the repository has been moved from SVN to gitlab at DTU
Compute.

After completing the exam, the course instructors export responses from Digital Exam & List of
Participants with R scripts and calculate grade using R studio. All R scripts and R markdown files are
stored and shared using SVN and currently gitlab. The generated text file output is copied in the Digital
Exam System so that all the 100+ students’ grades in each of the two courses can be published at the
same time.

4. Discussion
4.1 Piazza for Discussion: Pilot Study in Spring 2023

The discussion feature of the Brightspace LMS (DTU Learn) is not considered user-friendly by the
students and was hardly used for asking questions and resulted in receiving too many emails for
queries regarding various information, exercise solutions, etc. So, Piazza was used as an experiment
during Spring 2023.

15

The screenshot below shows Piazza used for 02402 statistics course. All the enrolled students, TAs
and the teaching team of six persons were invited to join directly via the emails, informed notified
through announcement and introduced during the first day of the course. The students could ask
anonymous questions and mainly two instructors responded to the students’ queries.

Instructors’ expectations: The instructors experienced that the students do not try to find all the
necessary information on the website, solutions to exercises and previous years’ exams, and do not
regularly attend class and the exercise sessions. The course instructors encourage the students to
attend the exercise session so that they and the TAs can address solutions without investing more
time for the large course. Yet, Piazza was adopted to investigate the potential. One of the challenges
is that the TAs do not have time between the face-to-face teaching sessions for giving responses to
the Piazza questions. However, the intention was also to encourage other students to respond with
answers but students’ responses to other students’ queries were very low.

Regarding the exams and other administrative queries, the students tend to email the course
instructors instead of the exam office or study administration. Piazza was expected to reduce direct
emails and get peer-group responses, but behavioural change was not observed significantly as the
students still sent some emails directly to the teachers. The students started using Piazza during the
last few weeks before the exam.

4.2 EdStem for Discussion: Pilot Study in Fall 2023 (also part of Direc P10 project)
In Fall 2023, the EdStem platform was being tested as an alternative to Piazza as R, Python and other
codes can be run directly on EdStem, as a part of the editor on the platform.

Instructors’ expectations: In large classes, teachers don’t have enough time to answer students’
questions one by one, especially in terms of code. Teachers have no way to view students' code line

16

by line, run and test it on their own computer. To provide students and teachers with a more
intuitive discussion channel, EdStem is used as an alternative to piazza.

EdStem was expected to reduce direct emails and help students get teachers'/TAs’ responses in an
organized way.

Figure. EdStem.org (Fall 2023)

4.3 Brightspace LMS (DTU Learn) for Discussion
The screenshots below show LMS (DTU learn) used for project submitting and receiving
announcements in the 02402 statistics course. All the enrolled students, TAs and the teaching team
of six persons were invited to join directly after they were registered in this course. As the main
platform of the teaching activity, Brightspace LMS (DTU learn) can be used from the first day of the
course.

Although the LMS has question-answering and discussion functions, students still tend to send
emails to teachers to ask questions. The use of LMS mainly focuses on reading course materials,
browsing videos, receiving course-related notifications and submitting/correcting projects.

17

18

19

5. Conclusion
The experiment conducted in the courses "02323 Introduction to Statistics" and "02402 Statistics
(Polytechnical Foundation)" was initiated with the aim of addressing challenges related to onboarding
new teaching roles and Teaching Assistants (TAs). The primary objectives included the creation of a
standardized and unified guideline for teachers and TAs and the identification of challenges within the
teaching activities of course instructors and coordinators.

Upon examination of the setup, it became evident that onboarding new teacher roles and TAs
presented significant difficulties, primarily due to the absence of a standardized guideline. New
teaching roles were confronted with the daunting task of navigating through multiple software
systems, leading to inefficiencies and potential disparities in their performance.

As a result, it is recommended that the implementation of a unified operational guideline be
prioritized. Such a guideline would not only streamline the onboarding process but also serve as a
valuable resource for addressing the problems and needs of teachers, as revealed through the
experiment. Furthermore, DTU's plan to transition from R to Python in 2024 may introduce variations
in software usage, but the workflow derived from this study remain relevant. It is advisable to use the
insights gained from the results of interviews to iteratively improve teaching processes and software
usage.

In addition to these findings, it is worth noting that this study explored the use of three new software
to enhance the classroom interaction experience. These software platforms, including Kahoot
(designed to increase classroom engagement), Piazza (a versatile discussion platform), and Edstem
(Discussion forum supporting multiple programming language compilation in the web editor), were
implemented to try to improve student engagement within the courses.

In summary, it is unlikely to have one large software system and the teachers and TA coordinators will
continue to use multiple software systems and underlying infrastructure at DTU. This project
attempted to make journey maps, overview of the software systems as part courses’ activities, and
the guides made for various software use. The aim is to improve the onboarding processes for new
teaching roles and TAs in addressing the challenges encountered. The journey map might be further
improved by including dates and deadlines, which can be developed as a calendar tool that will remind
the course coordinators and instructors for completing the tasks and also remind the software to be
used for those.

Acknowledgement
The project “Software Infrastructures for Teaching at Scale” is co-funded by Digital Research Centre
Denmark (DIREC) and the technical university of Denmark’s Department of Computer Science and
Applied Mathematics (DTU Compute).

Appendix I
Interview Guide for interviewing course instructor and coordinator

Interview Questions:

1. What is the name of your course?
2. How many students in one course?
3. Could you detail the process of your tasks?
4. Did you encounter any challenges or limitations in terms of instructional resource allocation

or teaching objectives during your tenure as a course instructor/teaching assistant?

20

5. Could you (instructor/coordinator) give me some instances of how you overcame the
challenges?

6. Which software or IT infrastructure instructors do you utilize to address these challenges?
7. What are the outcomes or results of overcoming these difficulties?

Appendix II
Instructions for direction of Introstat projects
This instruction lists the things you just need to know before correcting Introstat projects. If it is the
first time you must correct, we will arrange a time to review what needs to be done.

General

I. Corrected before 12 in the morning on the date at \texttt{Mail stating if you passed Project
...} for the course and project in question:

- 02323: \url{https://02323.compute.dtu.dk/projects}
- 02402: \url{https://02323.compute.dtu.dk/projects}

II. You fill in points for each report on the entry sheet
III. We send an email on the date at \texttt{Mail stating if you passed Project ...}, which contains

whether it was approved, as well as who corrected it, and that they can get further feedback
for the group bill the following day

IV. The students will therefore never know what points they have received, only whether it has
been approved or not

V. You give feedback to the students during their submission in Learn (short text, or annotated
in the report (uploaded or directly in Learn)):

- Go under: "Assignments -> relevant project -> relevant student's submission"
- Do not write anything about the points given or whether it is approved
- Write briefly (10-20 lines), as further feedback is given verbally the next day (your name is in

the email they received)
- You can also provide the comments as annotations in the pdf
- \emph{Press "Save draft" and do not publish}

VI. We release feedback to everyone at the same time as we send the email if they have been
approved.

VII. The hours given for directions are: 60 min. to start per new project, and 30 min. per project.

Correction instructions

I. For each project there is a correcting guide
II. This guide contains an example of what a good report can look like and it states how you

should count points
III. In red, it is described how you can "correct"/evaluate the answers. Don't get bogged down

in details, ie. if you judge that the student gives a reasonable answer, even if it does not
completely correspond to the sample report, then you give an appropriate number of
points!

Entry sheet
Everyone gets an entry sheet in which the points given for each question are recorded. The
maximum number of points that can be awarded is entered.

I. You enter points for each question, we only use these to calculate the total (and not the
value in \file{Sum})

II. You can either write points for each sub-point or total points for each question in the sheet
III. We do not use \file{Sum} and \file{Passed}, you can change them as you wish.

21

Set up navigation bar on LEARN
Copy from last semester

I. See in \file{projects.pdf} on copying the assignments
II. Not sure if possible to copy the navigation bar layout

Navigation bar layout
I. In learn go to "course admin" and then "Navigation and Themes"

II. "Create Navbar"
III. Add My Course
IV. Add Announcements
V. Add Assignments

VI. Add Custom link to the website

TA Hiring

I. To the “study administrative coordinator” send hired TA list, which course and if any are half
time.

II. Tell TAs only to report only groupexercise hours (total 45.5) in Fusion, we report the
assignment correction hours to Pia directly in the end.

III. Hire TAs ??This is not the way it works now: Sync the number of hours with Signe Møller
Jørgensen smjo@dtu.dk, remember to add hours for exam help days and online help., see
"misc/pbac/semester/tim"??

IV. Start a mail thread with TAs and invite for intro meeting if nessecary. Give them also
information about registration of themselves as TAs via Anna Jensen annje@dtu.dk.

V. TA timer online og få booket lokale til eksamensforberedelse

Preparation for the course

I. Add the DTU week numbers in your calendar and lecture events
II. Update the website and update project dates, see script for generating the Agendas

\file{trunk/website/make.R} (and \file{project.pdf})
III. Update the participant list on the websites (Admin/Course) by copying in the Inside url for

the current course
IV. Add project todo (mail TAs, distribute, mail, etc.) reminders in your calendar
V. Update CN frontpage text (very simple, just refer to the website)

VI. Copy slides to a new folder. Update the semester date in 'slides/slidesTitle1.Rnw' (It appears
in the lower right footer of the slides), and 'slides/slidesTitle2.Rnw'

VII. Add the TAs to the CN courses
VIII. Set remove answers to all weeks and makeAllSlides.R in the folder

A simple check list with todo for each week
Week 0

I. Send welcome message (link), include:
II. Website, Agendas, read first chapter

III. Send TA information about first time and how they should distribute in the rooms during
group exercises

IV. Make all project assignments in CN, copy from last year, see \file{projects.pdf}

Week 1

I. First day in the week: Send welcome message (link, maybe two messages one in beginning
of the week and one the day before), include:

II. Website, Course Material, Agendas, Testquizzes, ...(see last years message)

22

III. Find the students with projects already approved with the script
trunc/eksamen/projectFindFreebees.R and mail them and a message to all (find texts in
\file{projectTexts.txt})

IV. Update CN with projects.
V. Project message: introduce it in the lecture and send it there. Simple guidelines with link to

the website project page. Emphasize that plagiarism will be taken serious.

Week 6

I. Launch mid-term evaluation
II. Write to the TAs for their preferences regarding type and amounts of project 1 evaluations

Week 7

III. Check mid-term evaluation and include in lecture
IV. Project 1 hand-in
V. Check for plagiarism

VI. Distribute the reports to TAs after plagiarism check

Week 9

I. Write to the TAs for their preferences regarding type and amounts of project 2 evaluations

Week 10

I. Project 2 hand-in
II. Check for plagiarism

III. Distribute the reports to TAs after plagiarism check
IV. Trial exam in CN:
V. Create task

VI. You just have to create right??
VII. Import Previous Exam....

Week 11

I. Set up evaluation

Week 13

I. Examination announcement
II. Set up a digital test exam

III. Submit a report in Campusnet (Copy some of the good and bad of the evaluation)

Week 14

I. Exam announcement
II. Remember to write your answers on paper

III. Remember that you can give more than one answer, but then it counts as 'don't know'
IV. Remember to check where you will sit on the portal

Exam
EXAMINATION (Pass in all courses that have run (02402, 02323, 02593, 02403)):

I. Create a new exam task and select 'Multiple choiche task'
II. Set the start time

III. Select 'Use custom score calculation'
IV. Copy the description from the previous exam
V. Edit first question, upload real files and write their names

VI. Insert the correct answers

23

VII. Create corresponding exam Copies for the other courses
VIII. Make sure that those from 02593 do not get grades reported in 02323.

On streaming
Stream in Aud. 42
Setup in 42:

I. Set the slides on the projector(s)
II. Make the sound well, if feedback, then lower the level on the mic

III. To share room choose "Share room" and set "Public"
IV. Remember, for the monitor to be shared in the other room non-mute the loudspeaker icon

on the monitor symbol
V. Then go to the other room

VI. In the other room and pull "shared room" into the monitors and select "Room 42"

Feedback to students

I. If everything is really good, then short feedback that it is really good.
II. The points in the help form can e.g. is used to narrow down the points you can give feedback

on.
III. If a lot of work has been done on it, but there is a lot wrong, then we give more feedback

(they can learn something), but still briefly in writing, but they can then get more elaborate
orally for group calculation the next day.

IV. For oral feedback, you can open their submission and go through the points you have
commented on, then they can ask questions and you can explain what they have not
understood.

Projects
Create the projects in Learn

I. Go under "Course Admin -> Import / Export... " and copy the Assignments from last
semester

II. Change the dates afterwards under Assignments.
III. Remember to get the TAs preferences (share sheets where they can type in their

preferences for both projects, like which one and how many they want to correct)
IV. Remember to check under "Submission & Completion": "Only the most recent submission is

kept.”
V. Set the allowed file formats to ".pdf,.r"

Updating projects .z files

I. Run \file{svn update} in the \file{../projects} folder, such that all projects files are updated
II. Run \file{../projects/make_all.R} and cross you fingers that it runs ;D

III. Run \file{../projects/zipFiles/makeZipFiles.R} to update all \file{.zip} files

Sharepoint folder
At the start of the semester, create a sharepoint folder (same folder for 02323 and 02402). See
separate guide.

Project direction wishes

I. Ca. three weeks before deadline of project 1:
II. Create an excel sheet with preferences using template

III. Upload to sharepoint folder, ask TAs to fill in their preferences.

24

IV. Pre-meeting about project correction for new TAs, suggested day: Monday before deadline
of project 1.

Distribute projects to TAs

I. TODO: Copy the project folder from the template (see ‘taProjectsAdmin/Folder_Template’)
including all the files.

II. TODO: Update ‘TAProjects.xlsx’ to include all the TAs from the two courses
III. Close the assignments on Learn (use bulk edit and set ‘end date’)
IV. Download all reports in .zip files.
− For each assignment, remember to check that all are shown in the list (check below the list,

set to ‘200 per page’. If there are more, then you have to download in multiple .zip files)
− Check that no file submissions are missing a name (e.g. ‘.RData’ files will cause an error)
− Unzip the zips into the assignment folders (e.g. there will be an

“Input/Reports/skivefjord/287623- 23423 - s123456 name/report.pdf” file)
− Delete the zip files

V. Open “MakeSheets.R”
VI. Run the first part where data is read. The following might occur:
− If TAProjects.xlsx is not found, then look how it should be from last semester
− If while reading the reports a DTU initial is found, then follow the instructions and add to the

‘initials_and_studienr.csv’ file
VII. Now the reports must be distributed among the TAs according to their preferences, so do

that in the script
VIII. Write the sheets: THEY ARE NOW THE REFERENCE (or actually the ones that will be

downloaded when filled, but these here will be checked against the downloaded to see if all
was corrected), so any change in the distribution must be made directly in the sheets. Note
that they will not overwritten if they exists already.

− Un-comment the line where the file is produced (line 91)
− Remove the ’_REMOVETHIS’ text from the path string
− Run the line – Put the ’_REMOVETHIS’ text back in to the string
− Comment the line

IX. Write the zip-files.
X. Upload the sheets and the zip-files to share them with the TAs.

XI. Send the TAs a message, see last semester for the content.
XII. Check into svn: REMEMBER not to include the downloaded reports!

Project results
The TAs have a deadline 12.00 for correcting reports the day before the lectures. Project results shall
be done on the same day:

I. Download retteark from sharepoint into a folder (e.g. "indtastningsark_retur")
II. Run processResults.R. See details in the file.

III. Send out emails to students about passed/not passed via script in processResults.R. DO
CHECK EVERYTHING IS CORRECT AND MAKE A TEST EMAIL before sending out emails to
students. Please also save the file with test = TRUE on. Note: emails can only be sent when
you are connected to DTU's wired network!

IV. Publish all feedback on Learn

Update the project status list
(\file{projects.csv})
Run \file{eksamen/projectsUpdate.R}

25

Find students who don't need to hand in a project
I. Download the participants list for each course from: \url{http://deltagerlister.ait.dtu.dk/}

II. Find the course and take "datafil", mark all (with the header), and then paste into a text file
III. "Save as" under currect \file{eksamen/''date''}

\file{downloadedLists/deltagerlisteXXXXX.csv}. IMPORTANT, simply use notepad or another
texteditor, not Excell, to keep the format.

IV. Run the \file{projectFindFreebees.R} to make an email list
V. Send a mail and message to in the beggining of the course, see \file{calendar.pdf} under

week 1
VI. Find texts in \file{projectTexts.txt}

Find who didn't pass the projects and must be signed off the exam

I. After finalizing all points from the TAs evaluation of the reports run the
\file{projektResultater.R} in the semester folder

II. Then run \file{eksamen/projectsUpdate.R}
III. Update the deltagerliste (like in done in the previous section). USE "Eksamenstilmeldinger"

(exam registrations)
IV. Run the \file{projectMakeAfmeld.R}, it makes \file{afmeld.txt} in the semester folder, which

is a list of who to sign off the exam
V. Send a mail to the ones to be de-assigned: a mail text is in \file{projectTexts.txt}

VI. Send the list to Henriette and Joan

Add students who previous had the exam before 2014 fall

I. Open \file{ ../eksamen/misc/freebeeslister/freebees.csv} and in the bottom add the student
II. Run \file{projectsUpdate.R} to update the \file{projects.csv} (NOTE don't edit in

\file{projects.csv})

Developing project
File naming conventions

I. Each project has an id consisting of a name and the project number (1 or 2)
II. Each project has a folder with its id (e.g. skivefjord1)

III. See the naming of each file in the skivefjord folder
Project description conventions

I. Each project has a description in both Danish and English
II. See the format in skivefjord1_dansk.pdf

III. In each project folder is a "make.R" containing the R script to knit and compile the document
Compiling zips for upload

I. The R-script "zipFiles/makeZipFiles.R" generates zip files for upload on CN.
II. Zip files for upload are placed in "zipFiles/"

Weeks for deadlines (works for fall, but usually needs to be modified for 02323 in spring)
Find the weeks from: \url{http://www.dtu.dk/Uddannelse/Kursusbasen/Undervisningsaaret}

I. Find the exam date from (also lokaleoversigt should be there at Portalen):
\url{http://www.dtu.dk/Uddannelse/Kursusbasen/Eksamensskema} or
\url{http://portalen.dtu.dk/DTU_Generelt/AUS/Studerende/Infosite/Eksamensdatoer.aspx}

II. Add the weekdates and examdate to your calendar
Project 1:

I. Week 7 hand in (must be one week after week 6)
II. Week 9 mail and feedback

III. Week 10 re-handin

26

Project 2:
I. Week 10 handin (must be one week after week 9)

II. Week 12 mail and feedback
III. Week 13 re-handin

Previous semester dates
Template to be re-used for scheduling deadlines for project dates

2016dec
Project dates 02402 (Tuesdays) dates for Project 1:

I. Oct.: Project 1 hand-in (23:59:59)
II. Oct.: Mail stating if you passed Project 1 and which TA evaluated it

III. Nov: Get feedback on Project 1 during the exercises from the TA that evaluated your report
IV. Nov.: Re-hand in deadline of Project 1 (23:59:59).

02402 (Tuesdays) dates for Project 2:
I. Nov.: Hand-in deadline of Project 2 (23:59:59)

II. Nov: Mail stating if you passed Project 2 and which TA evaluated it
III. Nov: Get feedback on Project 2 during the exercises from the TA that evaluated your report
IV. Nov: Re-hand deadline of Project 2 (23:59:59)

02323 (Fridays) dates for Project 1:
I. Oct.: Project 1 hand-in (23:59:59)

II. Nov.: Mail stating if you passed Project 1 and which TA evaluated it
III. Nov: Get feedback on Project 1 during the exercises from the TA that evaluated your report
IV. Nov.: Re-hand in deadline of Project 1 (23:59:59).

02323 (Fridays) dates for Project 2:
I. Nov.: Hand-in deadline of Project 2 (23:59:59)

II. Nov: Mail stating if you passed Project 2 and which TA evaluated it
III. Nov: Get feedback on Project 2 during the exercises from the TA that evaluated your report
IV. Dec: Re-hand deadline of Project 2 (23:59:59)

2016may
02402 (Tuesdays) dates for Project 1:

I. Mar.: Project 1 hand-in (23:59:59)
II. Apr.: Mail stating if you passed Project 1 and which TA evaluated it

III. Apr: Get feedback on Project 1 during the exercises from the TA that evaluated your report
IV. Apr.: Re-hand in deadline of Project 1 (23:59:59). 02402 (Tuesdays) dates for Project 2:
V. Apr.: Hand-in deadline of Project 2 (23:59:59)

VI. Apr: Mail stating if you passed Project 2 and which TA evaluated it
VII. Apr: Get feedback on Project 2 during the exercises from the TA that evaluated your report

VIII. May: Re-hand deadline of Project 2 (23:59:59) 02323 (Fridays) dates for Project 1:
IX. Mar.: Project 1 hand-in (23:59:59)
X. Apr.: Mail stating if you passed Project 1 and which TA evaluated it

XI. Apr.: Get feedback on Project 1 during the exercises from the TA that evaluated your report
XII. Apr.: Re-hand in deadline of Project 1 (23:59:59). 02323 (Fridays) dates for Project 2:

XIII. Apr.: Hand-in deadline of Project 2 (23:59:59)
XIV. Apr.: Mail stating if you passed Project 2 and which TA evaluated it
XV. Apr.: Get feedback on Project 2 during the exercises from the TA that evaluated your report

XVI. May: Re-hand deadline of Project 2 (23:59:59)

2015dec
Project dates 02402 (Tuesdays) dates for Project 1:

27

I. Oct.: Project 1 hand-in (23:59:59)
II. Nov.: Mail stating if you passed Project 1 and which TA evaluated it

III. Nov: Get feedback on Project 1 during the exercises from the TA that evaluated your report
IV. Nov.: Re-hand in deadline of Project 1 (23:59:59). 02402 (Tuesdays) dates for Project 2:
V. Nov.: Hand-in deadline of Project 2 (23:59:59)

VI. Nov: Mail stating if you passed Project 2 and which TA evaluated it
VII. Nov: Get feedback on Project 2 during the exercises from the TA that evaluated your report

VIII. Dec: Re-hand deadline of Project 2 (23:59:59) 02323 (Fridays) dates for Project 1:
IX. Oct.: Project 1 hand-in (23:59:59)
X. Nov.: Mail stating if you passed Project 1 and which TA evaluated it

XI. Nov: Get feedback on Project 1 during the exercises from the TA that evaluated your report
XII. Nov.: Re-hand in deadline of Project 1 (23:59:59). 02323 (Fridays) dates for Project 2:

XIII. Nov.: Hand-in deadline of Project 2 (23:59:59)
XIV. Nov: Mail stating if you passed Project 2 and which TA evaluated it
XV. Nov: Get feedback on Project 2 during the exercises from the TA that evaluated your report

XVI. Dec: Re-hand deadline of Project 2 (23:59:59)

Administration of projects in Introstat
Distribute project to TAs

I. TODO: Copy the project folder from last semester (see '../misc/pbac/2021maj/project1/')
II. TODO: Run 'clean.R' in the folder

III. Close the assignments on Learn (use bulk edit and set 'end date')
IV. Download all reports in .zip files

- For each assigment, remember to check that all are shown in the list (check below the list,
set to '200 per page'. If there are more, then you have to download in multiple .zip files)

- Unzip the zips into the assignment folders (e.g. there will be an
"Input/Reports/skivefjord/287623-23423 - s123456 name/report.pdf" file)

- Delete the zip files
V. Open "MakeSheets.R"

VI. Run the first part where data is read. The following might occur:
- If TAProjects.xlsx is not found, then look how it should be from last semester
- If while reading the reports a DTU initial is found, then follow the instructions and add to the

'initials_and_studienr.csv' file
VII. Now the reports must be distributed among the TAs according to their preferences, so do

that in the script.
VIII. Write the sheets: THEY ARE NOW THE REFERENCE (or actually the ones that will be

downloaded when filled, but these here will be checked against the downloaded to see if all
was corrected), so any change in the distribution must be made directly in the sheets. Note
that they will not overwritten if they exists already.

IX. Write the zip-files.
X. Upload the sheets and the zip-files to share them with the TAs.

XI. Send the TAs a message, see last semester for the content.
XII. Check into svn: REMEMBER not to include the downloaded reports!

Exam
Set up of exam
1. Log in: \url{eksamen.dtu.dk} and go to the current semester, where the exams should be listed.
2. Log in as administrator
3. Select the exam to set up.

28

Set up only for Test Exam
For the test exams we need to insert dates, not for real exams (exam office controls those, also time
for special needs etc. is added automatically)

I. Go to Exam Data in the left pane,
II. Exam Start: Right when you are editing

III. Exam End: The night before the actual exam
IV. Assessment start and end does not matter.
V. Don't change other field and save.

Under "Assessors" the ones who must be able to access the answers (logging in as assessor) must be
added.

I. In test exams we have to first add us as assessor. Click directly on the "Edit assessors" field
and find your name (as Examinator)

II. For test and real exam: To mark all students click the assessor's name in the column and click
save!

Add multiple choice
(FOR TEST EXAM, remember to use the previous semester files!)

I. Go to the "Multiple Choice" tab (or "Exam question set" and click "Change to multiple
choice") and take "Edit multiple choice"

II. In the bottom "Create questionnaire". Select "Manual scoring". DO NOT select "Jeg ønsker at
spørgsmål vises i tilfældig rækkefølge for studerende" and "Jeg ønsker at svarmuligheder
vises i tilfældig rækkefølge for studerende".

III. Delete the first question (under dots on the question)
IV. Give the questionnaire the correct name (e.g. \file{02323 Prøveeksamen / Test exam})
V. Upper right dots: "Paste questions": Copy the content of the generated text file named (e.g.\

\file{questions_2020dec_02323_solution_en.txt} generated in the exam folder)
VI. Replace the default text with content from the file \filelink{guides/misc/examText.txt}

VII. Replace the pdf file (links): Click the "link" button in the menu above.
VIII. Go to "Upload", choose the exam pdf file and "Send it to the Server"

IX. Give it the correct name and "Ok".
X. Remove the old .pdf names.

XI. FINALLY, under the "Multiple Choice" tab, select "Add multiple choice" and select the
questionnaire and press save.

XII. For test exam, remember to make it visible and copy the pin code or deactivate it on "Exam
data" tab.

How to change multiple choice:
The question sheet cannot be changed after being attached to an exam. However the following
works:

I. Go to the "Multiple Choice" tab, remove the attached multiple choice
II. Go to "https://designer.mcq.eksamen.dtu.dk/". The question sheet can now be changed.

III. Go back to the "Multiple Choice" tab and re-add the question sheet.

Set up for the additional exam
The additional exam for notes must be set up the same way regarding dates and assessors. In
addition:

29

I. Select the exam
II. Set dates (only for test exam)

III. Go to the "Set of exam questions" tab (or "Multiple Choice" and click "Change
 assignment type") and take "Add set of exam questions"
Set:

I. Title: \file{Mellemregninger / Notes}
II. Description: \file{Aflever dine mellemregninger her / Upload your notes here}

III. Assign the assessors

On the exam day

I. The central administration configures the start and end time in the digital exam system. The
exam office also provides hand-written exam answers for some students and in such a case
the hand-written document is considered for assessment and the digital exam system’s
entries are excluded.

II. After the exam, the examiner uploads the questions and the solutions to the courses
websites and sends email to the students through the learning management system’s
announcement feature.

Calculating the grades after the exam
Prepare the folder:

I. Copy the \file{resultater} folder from a previous year
II. Copy the correct answer files

(e.g.\\file{correctAnswers_2017aug_02323_02402_solution_en.rda}) to the
\file{resultater} folder.

Download the digital answers

I. Go to \file{exam.dtu.dk} and find the exam (remember to add you as assessor to each
student, see above).

II. Select the exam and take "Go to MCG overview" and select "Export".
III. Save the file in \file{resultater/examLists/}.
IV. Convert to ".csv" with ";" as separator.

Download three lists for the course

I. Download the \file{Eksamenstilmeldinger} list for each course from:
\url{http://deltagerlister.ait.dtu.dk/}

II. Click \file{Datafil} in the upper menu
III. Select all (with the header) and copy-paste into a text file

 \file{examLists/deltagerlisteXXXXX.csv} (REMEMBER to open and save this one with ";"
seperator!)

IV. Download the \file{Eksamenstilmeldinger} list for the course from:
\url{http://deltagerlister.ait.dtu.dk/}

V. Click \file{Datafil} in the upper menu
VI. Select all (with the header) and copy-paste into a text file

\file{examLists/deltagerlisteXXXXX.csv} (REMEMBER to open and save this one with ";"
seperator!)

VII. Go to \url{inside.dtu.dk} and "Education" and under "toolbox" take "Marks"
VIII. Select the right course, and select "Import/Export data" and then "Export to Excel"

IX. Save the file in \file{resultater/examLists/karakterlisteXXXXX.xml}, where \file{XXXXX} is
couse number

30

X. Convert the saved files to \file{karakterlisteXXXXX.csv}, with formatting (\file{;} and quotes
on strings)

XI. Remove the \file{.xml} files

Update the files

I. Run the \file{trunc/eksamen/projectsUpdate.R} to update the \file{project.csv}
II. Go and find the green envelopes, which contain answers delivered on paper and no digital

hand-in code (digital hand-in counts over white paper hand-in)
− Only answers on white paper, which are clearly stated should be typed in
− (REMEMBER to open and save with ";" seperator!) In

\file{resultater/examLists/deltagerlisteXXXXX.csv}: Type in the answers in additional three
columns in (answer 1-10, answer 11-20, answer 21-30), as integers \file{xxxxxxxxxx}, with
\file{6} as no answer

III. Make a check that the students were actually there
− Find the EM lists and in \file{resultater/examLists/deltagerlisteXXXXX.csv} type in 'e' in

column "K", then it's checked in the scripts, that they didn't hand in.

Calculate the grades with \file{analyse.R}

I. Read the data: include each course:
− Digital answers count over paper answers.
− If a student have both answers on paper than on digital and they are different, these are

printed out.
− You can use the paper answers by: \file{res[res\$studienr=='s123456', qnames] <-

respaper[respaper\$studienr=='s123456', qnames]}.
II. Set the path to load the correct answers.

III. If any questions are to be taken out of the evaluation, specify the question numbers in
spmOut (otherwise set to NA).

IV. Set the \file{limit} to pass and limits for all grading and calculate.
V. Check for the projects, if anyone has sneaked below the rader and have a grade, without

having their projects approved.
VI. Write the results and go to \file{Marks} under CN.
− Note that in the script students missing on the karakterliste are printed.
− Upload the results by copying directly from \file{resultsCN_XXXXX.txt}.

Appendix III
Links to Video guide
Video guide on how to distribute projects to TAs.
02323 Project 1 division-20231016_103438-Meeting Recording.mp4 (for DTU’s internal use only)

	Introduction
	Context Within DIREC
	Existing Cloud Infrastructure for Teaching at Scale
	Communication and Commitment
	Outline

	Summary of Experiments
	A: Support System for Programming Projects
	Teaching Context and Objectives
	Software and Infrastructure
	Outcome and Recommendations

	B: Teaching Software Engineering at Scale
	Teaching Context and Objectives
	Software and Infrastructure
	Outcome and Recommendations

	C: Automatic assessment of software assignments: Scalable Teaching
	Teaching Context and Objectives
	Case A: Web Technologies
	Case B: Advanced Object-Oriented Programming

	Software and Infrastructure
	Outcome and Recommendations
	Automatic Testing
	Code Review Quality Assessment
	Software Engineering Outside Coding Components
	Difficulty of Use for Students
	Difficulty of Use for Professors

	D: Distributed Systems Graphical Interface
	Teaching Context and Objectives
	Software and Infrastructure
	Outcome and Recommendations

	E: Enhancing Cybersecurity Education Through Developing for Haaukins
	Teaching Context and Objectives
	Software and Infrastructure
	Outcome and Recommendations

	F: Software Infrastructures for Teaching at Scale: The Case of Introduction to Statistics at Technical University of Denmark
	G: Web Apps for Education Management
	Teaching Context and Objectives
	Software and Infrastructure
	Outcome and Recommendations

	Conclusion and Future Work
	Conclusions on Project Organization in General
	Conclusions on Organization of this Project
	Tools and Infrastructure Development

	Appendix

