Benefit and Bias of Approximate Nearest Neighbor Search for Machine Learning and Data Mining
The search for nearest neighbors is essential but often inefficient in applications like clustering and classification, especially with high-dimensional big data. Traditional methods become impractical due to the curse of dimensionality, making approximate nearest neighbor (ANN) search methods a faster alternative despite their inexact results. ANN methods significantly enhance processing speed, impacting algorithmic decision-making processes by introducing trade-offs in accuracy, bias, and trustworthiness, which must be carefully considered for different use cases.