Project type: Bridge Project
The EXPLAIN-ME initiative seeks to optimize the utility of feedback provided by healthcare explainable AI (XAI). We will approach this problem both in static healthcare applications, where clinical decisions are based on data already collected, and in dynamic applications, where data is collected on the fly to continually improve confidence in the clinical decision.
Classification of a renal tumor as malign or benign is an example of a decision that needs to be taken under time pressure. If malign, the patient should be operated immediately to prevent cancer from spreading to the rest of the body, and thus a false positive diagnosis may lead to the unnecessary destruction of a kidney and other complications. While AI methods can be shown statistically to be more precise than an expert physician, there is a need for extending it with explanation for a decision– and only the physicians know what “a good explanation” is. This motivates a collaborative design and development process to find the best balance between what is technically possible and what is clinically needed.
Case 2: Ultrasound Screening.
Even before birth, patients suffer from erroneous decisions made by healthcare workers. In Denmark, 95% of all pregnant women participate in the national ultrasound screening program aimed at detecting severe maternal-fetal disease. Correct diagnosis is directly linked to the skills of the clinicians, and only about half of all serious conditions are detected before birth. AI feedback, therefore, comes with the potential to standardize care across clinicians and hospitals. At DTU, KU and CAMES, ultrasound imaging will be the main case for development, as data access and management, as well as manual annotations, are already in place. We seek to give the clinician feedback during scanning, such as whether the current image is a standard ultrasound plane (see figure); whether it has sufficient quality; whether the image can be used to predict clinical outcomes, or how to move the probe to improve image quality.
Case 3: Robotic Surgery.
AAU and NordSim will collaborate on the assessment and development of robotic surgeons’ skills, associated with an existing clinical PhD project. Robotic surgery allows surgeons to do their work with more precision and control than traditional surgical tools, thereby reducing errors and increasing efficiency. AI-based decision support is expected to have a further positive effect on outcomes. The usability of AI decision support is critical, and this project will study temporal aspects of the human-AI collaboration, such as how to present AI suggestions in a timely manner without interrupting the clinician; how to hand over tasks between a member of the medical team and an AI system; and how to handle disagreement between the medical expert and the AI system.
In current healthcare AI research and development, there is often a gap between the needs of clinicians and the developed solutions. This comes with a lost opportunity for added value: We miss out on potential clinical value for creating standardized, high quality care across demographic groups. Just as importantly, we miss out on added business value: If the first, research-based step in the development food chain is unsuccessful, then there will also be fewer spin-offs and start-ups, less knowledge dissemination to industry, and overall less innovation in healthcare AI.
The EXPLAIN-ME initiative will address this problem:
This comes with great potential value: While AI has transformed many aspects of society, its impact on the healthcare sector is so far limited. Diagnostic AI is a key topic in healthcare research, but only marginally deployed in clinical care. This is partly explained by the low interpretability of state-of-the-art AI, which negatively affects both patient safety and clinicians’ technology acceptance. This is also explained by the typical workflow in healthcare AI research and development, which is often structured as parallel tracks where AI researchers independently develop technical solutions to a predefined clinical problem, while only occasionally interacting with the clinical end-users. This often results in a gap between the clinicians’ needs and the developed solution. The EXPLAIN-ME initiative aims to close this gap by developing AI solutions that are designed to interact with clinicians in every step of the design-, training-, and implementation process.
October 1, 2021 – April 30, 2025 – 3,5 years.
Technical University of Denmark
DTU Compute
University of Copenhagen
Department of Computer Science
Aalborg University
Department of Computer Science
Aalborg University
Department of Computer Science
Roskilde University
Department of People and Technology
Roskilde University
Department of People and Technology
Roskilde University
Department of People and Technology
CAMES Rigshopitalet
University of Copenhagen
CAMES Rigshospitalet
University of Copenhagen
Dept. of Clinical Medicine
Aalborg University
NordSim
Aalborg University
Department of Urology
Zealand University Hospital
Formålet med DIREC er at udbygge kapaciteten inden for forskning, innovation og uddannelse i digitale teknologier i Danmark. Derudover skal DIREC bidrage til Danmarks konkurrenceevne gennem samarbejde med danske virksomheder og den offentlige sektor om udvikling af nye innovative produkter og tjenester baseret på de nyeste digitale teknologier.
DIREC er delvist finansieret af Innovationsfonden.
© 2022 All Rights Reserved