Søg
Close this search box.

DIREC-projekt

AI and Blockchains for Complex Business Processes

Resumé

I dag er forretningsprocesser i private virksomheder og offentlige organisationer bredt understøttet af Enterprise Resource Planning, Business Process Management og Electronic Case Management systemer, der tages i brug med det formål at forbedre effektiviteten af forretningsprocesserne. 
 
Resultat er dog ofte et stadig mere omfattende informationssystemlandskab, hvilket fører til ineffektivitet, begrænset forståelse af forretningsprocesser, manglende evne til at forudsige og finde årsagen til tab, fejl og svindel og manglende evne til at tilpasse forretningsprocesserne. Denne mangel på forståelse, smidighed og kontrol over forretningsprocesser lægger en stor byrde på virksomhederne og organisationerne. 
 
Projektet har sammen med industrielle partnere til formål at udvikle metoder og værktøjer, der sætter industrien i stand til at udvikle nye effektive løsninger til at udnytte den enorme mængde forretningsdata, der genereres af disse systemer. 

Projektperiode: 2021-2025

Enterprise and block chain systems generate a plethora of highly granular data recording their operation. Machine learning has a great potential to aid in the analysis of this data in order to predict errors, detect fraud and improve their efficiency. Knowledge of business processes can also be used to support the needed transformation of old and heterogeneous it landscapes to new platforms. Application areas include Anti-Money-Laundering (AML) and Know-Your-Customer (KYC) supervision of business processes in the financial sector, supply chain management in agriculture and foodstuff supply, and compliance and optimisation of workflow processes in the public sector.

The research aim of the AI and Blockchain for Complex Business Processes project is methods and tools that enable industry to develop new efficient solutions for exploiting the huge amount of business data generated by enterprise and blockchain systems, from techniques for automatic identification of business events, via the development of new rule based process mining technologies to tools for the use of process insights for business intelligence and transformation.

The project will do this through a unique bridge between industry and academia, involving two innovative, complementary industrial partners and researchers across disciplines of AI, software engineering and business intelligence from three DIREC partner universities. Open source release (under the LGPL 3.0 license) of the rule-based mining algorithms developed by the PhD assigned task 2 will ensure future enhancement and development by the research community, while simultaneously providing businesses the opportunity to include them in proprietary software.

Værdi

Projektet vil udvikle metoder og værktøjer, der gør industrien i stand til at udvikle nye effektive løsninger til at udnytte den enorme mængde forretningsdata, der genereres af virksomhedssystemer.

Nyheder / omtale

Deltagere

Project Manager

Tijs Slaats

Associate Professor

University of Copenhagen
Department of Computer Science

E: hilde@di.ku.dk

Jakob Grue Simonsen

Professor

University of Copenhagen
Department of Computer Science

Thomas Hildebrandt

Professor

University of Copenhagen
Department of Computer Science

Michel Avital

Professor

Copenhagen Business School
Department of Digitalization

Henrik Axelsen

PHD Fellow

University of Copenhagen
Department of Computer Science

Christoffer Olling Back

Staff Machine Learning Engineer / Industrial postdoc

ServiceNow / University of Copenhagen

Anders Mygind

Director

ServiceNow

Søren Debois

Associate Professor

IT University of Copenhagen
Department of Computer Science

Omri Ross

Chief Blockchain Scientist

eToro

Axel Fjelrad Christfort

PhD Fellow

University of Copenhagen
Dept. of Computer Science

Hugo López

Associate Professor

Technical University of Denmark
DTU Compute

Partnere